Your browser doesn't support javascript.
loading
Sequence-specific dynamics of DNA response elements and their flanking sites regulate the recognition by AP-1 transcription factors.
Hörberg, Johanna; Moreau, Kevin; Tamás, Markus J; Reymer, Anna.
Afiliação
  • Hörberg J; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
  • Moreau K; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
  • Tamás MJ; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
  • Reymer A; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
Nucleic Acids Res ; 49(16): 9280-9293, 2021 09 20.
Article em En | MEDLINE | ID: mdl-34387667
ABSTRACT
Activator proteins 1 (AP-1) comprise one of the largest families of eukaryotic basic leucine zipper transcription factors. Despite advances in the characterization of AP-1 DNA-binding sites, our ability to predict new binding sites and explain how the proteins achieve different gene expression levels remains limited. Here we address the role of sequence-specific DNA flexibility for stability and specific binding of AP-1 factors, using microsecond-long molecular dynamics simulations. As a model system, we employ yeast AP-1 factor Yap1 binding to three different response elements from two genetic environments. Our data show that Yap1 actively exploits the sequence-specific flexibility of DNA within the response element to form stable protein-DNA complexes. The stability also depends on the four to six flanking nucleotides, adjacent to the response elements. The flanking sequences modulate the conformational adaptability of the response element, making it more shape-efficient to form specific contacts with the protein. Bioinformatics analysis of differential expression of the studied genes supports our

conclusions:

the stability of Yap1-DNA complexes, modulated by the flanking environment, influences the gene expression levels. Our results provide new insights into mechanisms of protein-DNA recognition and the biological regulation of gene expression levels in eukaryotes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / DNA / Fator de Transcrição AP-1 / Proteínas de Saccharomyces cerevisiae / Proteínas Adaptadoras de Transdução de Sinal Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / DNA / Fator de Transcrição AP-1 / Proteínas de Saccharomyces cerevisiae / Proteínas Adaptadoras de Transdução de Sinal Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article