Your browser doesn't support javascript.
loading
Design of microstructure for hollow fiber loose nanofiltration separation layer and its compactness-tailoring mechanism.
Song, Chenyang; Tang, Shenyi; Yue, Shangzhi; Cui, Zhenyu; Du, Xi; Jiang, Tao; He, Benqiao; Li, Jianxin.
Afiliação
  • Song C; School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China.
  • Tang S; School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China.
  • Yue S; School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China.
  • Cui Z; School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China. Electronic address: cuizhenyu@tiangong.edu.cn.
  • Du X; School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China.
  • Jiang T; Beijing Alliance PKU Management Consultants Ltd., Beijing 100101, PR China.
  • He B; School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China.
  • Li J; School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China.
J Hazard Mater ; 421: 126800, 2022 Jan 05.
Article em En | MEDLINE | ID: mdl-34396955
ABSTRACT
In order to promote the application of membrane technology in the treatment of textile wastewater containing small molecule dye, fabricating a hollow fiber loose nanofiltration (LNF) with a thin and compact separation layer and deepening the understanding of compactness-tailoring mechanism in chemical crosslinking are essential. Firstly, the mechanisms of synergistic crosslinking of PEI-70K and PEI-10K, along with a weakening of the PEI hydration by ethanol, were expounded in primary crosslinking. Then, some LNF separation layers with different compactness were prepared through crosslinking with different crosslinkers to further reduce pore size, which resulted in the efficient removal (~100%) of a small molecular dye (methyl orange (MO), M = 327 g mol-1). The removal of methyl orange is mainly caused by size sieving. The relationship among the pore size, the Mw of the secondary crosslinkers, and the pore size reduction rate was interpreted by comparing the pore size reduction rate of three secondary crosslinkers with different molecular weights. In addition, the as-prepared separation layer exhibited excellent dimensional stability and solvent resistance. This paper not only provides a reference for fabricating hollow fiber LNF with better purification performance, but also shows their potential in developing solvent resistant nanofiltration.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article