Your browser doesn't support javascript.
loading
BitQT: a graph-based approach to the quality threshold clustering of molecular dynamics.
González-Alemán, Roy; Platero-Rochart, Daniel; Hernández-Castillo, David; Hernández-Rodríguez, Erix W; Caballero, Julio; Leclerc, Fabrice; Montero-Cabrera, Luis.
Afiliação
  • González-Alemán R; Departamento de Química-Física, Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, La Habana 10400, Cuba.
  • Platero-Rochart D; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France.
  • Hernández-Castillo D; Departamento de Química-Física, Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, La Habana 10400, Cuba.
  • Hernández-Rodríguez EW; Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria.
  • Caballero J; Laboratorio de Bioinformática y Química Computacional, Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile.
  • Leclerc F; Departamento de Bioinformática, Facultad de Ingeniería, Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca 3460000, Chile.
  • Montero-Cabrera L; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France.
Bioinformatics ; 38(1): 73-79, 2021 12 22.
Article em En | MEDLINE | ID: mdl-34398215
MOTIVATION: Classical Molecular Dynamics (MD) is a standard computational approach to model time-dependent processes at the atomic level. The inherent sparsity of increasingly huge generated trajectories demands clustering algorithms to reduce other post-simulation analysis complexity. The Quality Threshold (QT) variant is an appealing one from the vast number of available clustering methods. It guarantees that all members of a particular cluster will maintain a collective similarity established by a user-defined threshold. Unfortunately, its high computational cost for processing big data limits its application in the molecular simulation field. RESULTS: In this work, we propose a methodological parallel between QT clustering and another well-known algorithm in the field of Graph Theory, the Maximum Clique Problem. Molecular trajectories are represented as graphs whose nodes designate conformations, while unweighted edges indicate mutual similarity between nodes. The use of a binary-encoded RMSD matrix coupled to the exploitation of bitwise operations to extract clusters significantly contributes to reaching a very affordable algorithm compared to the few implementations of QT for MD available in the literature. Our alternative provides results in good agreement with the exact one while strictly preserving the collective similarity of clusters. AVAILABILITY AND IMPLEMENTATION: The source code and documentation of BitQT are free and publicly available on GitHub (https://github.com/LQCT/BitQT.git) and ReadTheDocs (https://bitqt.readthedocs.io/en/latest/), respectively. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Simulação de Dinâmica Molecular Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Simulação de Dinâmica Molecular Idioma: En Ano de publicação: 2021 Tipo de documento: Article