Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells.
Saudi Pharm J
; 29(8): 857-873, 2021 Aug.
Article
em En
| MEDLINE
| ID: mdl-34408546
BACKGROUND: Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). METHODS: CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. RESULTS: CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an 'initial burst effect' followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. CONCLUSION: The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.
ABC, ATP-binding cassette; ANOVA, Analysis of variance; Active drug targeting; BBB, Blood brain barrier; BCRP, Breast cancer resistance protein; CSP, Cisplatin; CSP-NPs, Cisplatin nanoparticles DMEM, Dulbecco's modified eagle medium; Cisplatin nanoparticles; DMSO, Dimethyl sulfoxide; DNR, Daunorubicin; DOX, Doxorubicin; Drug uptake and accumulations; EDTA, Ethylenediaminetetraacetic acid; EPR, Enhanced permeability retention; FACS, Fluorescence activated cell sorting; FBS, Fetal bovine serum; FTC, Fumitremorgin C; GBM, Glioblastoma multiforme; HBSS, Hank's balanced salt solution; HPLC, High Performance Liquid Chromatography; Induction of Apoptosis; MDR, Multidrug resistance; MTT, Methyl tetrazolium; MX, Mitoxantrone; NPs, Nanoparticles; O.D., Optical density; PBS, Phosphate buffer saline; PI, Propidium iodide; PLGA, Poly (lactic-co-glycolic) acid; RT, Room temperature; Rho-123, Rhodamine 123; SDS, Sodium dodecyl sulfate; SEM, Scanning electron microscopy; Targeting multidrug resistance (MDR) transporters; nm, Nanometer
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article