Your browser doesn't support javascript.
loading
Bacterial translation machinery for deliberate mistranslation of the genetic code.
Vargas-Rodriguez, Oscar; Badran, Ahmed H; Hoffman, Kyle S; Chen, Manyun; Crnkovic, Ana; Ding, Yousong; Krieger, Jonathan R; Westhof, Eric; Söll, Dieter; Melnikov, Sergey.
Afiliação
  • Vargas-Rodriguez O; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511; oscar.vargas@yale.edu dieter.soll@yale.edu.
  • Badran AH; Broad Institute of MIT and Harvard, Cambridge, MA 02142.
  • Hoffman KS; Bioinformatics Solutions Inc., Waterloo, ON N2L 6J2, Canada.
  • Chen M; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610.
  • Crnkovic A; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.
  • Ding Y; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610.
  • Krieger JR; Bioinformatics Solutions Inc., Waterloo, ON N2L 6J2, Canada.
  • Westhof E; Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 67084 Strasbourg, France.
  • Söll D; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511; oscar.vargas@yale.edu dieter.soll@yale.edu.
  • Melnikov S; Department of Chemistry, Yale University, New Haven, CT 06511.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article em En | MEDLINE | ID: mdl-34413202
ABSTRACT
Inaccurate expression of the genetic code, also known as mistranslation, is an emerging paradigm in microbial studies. Growing evidence suggests that many microbial pathogens can deliberately mistranslate their genetic code to help invade a host or evade host immune responses. However, discovering different capacities for deliberate mistranslation remains a challenge because each group of pathogens typically employs a unique mistranslation mechanism. In this study, we address this problem by studying duplicated genes of aminoacyl-transfer RNA (tRNA) synthetases. Using bacterial prolyl-tRNA synthetase (ProRS) genes as an example, we identify an anomalous ProRS isoform, ProRSx, and a corresponding tRNA, tRNAProA, that are predominately found in plant pathogens from Streptomyces species. We then show that tRNAProA has an unusual hybrid structure that allows this tRNA to mistranslate alanine codons as proline. Finally, we provide biochemical, genetic, and mass spectrometric evidence that cells which express ProRSx and tRNAProA can translate GCU alanine codons as both alanine and proline. This dual use of alanine codons creates a hidden proteome diversity due to stochastic Ala→Pro mutations in protein sequences. Thus, we show that important plant pathogens are equipped with a tool to alter the identity of their sense codons. This finding reveals the initial example of a natural tRNA synthetase/tRNA pair for dedicated mistranslation of sense codons.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Streptomyces / Biossíntese de Proteínas / Códon / Aminoacil-RNA de Transferência / Escherichia coli / Código Genético / Aminoacil-tRNA Sintetases Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Streptomyces / Biossíntese de Proteínas / Códon / Aminoacil-RNA de Transferência / Escherichia coli / Código Genético / Aminoacil-tRNA Sintetases Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article