Your browser doesn't support javascript.
loading
Design, synthesis, and antitumor activity evaluation of steroidal oximes.
Gomes, Ana R; Pires, Ana S; Abrantes, Ana M; Gonçalves, Ana C; Costa, Saul C; Varela, Carla L; Silva, Elisiário T; Botelho, Maria F; Roleira, Fernanda M F.
Afiliação
  • Gomes AR; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Univ Coimbra, Faculty of Pharmacy, Labor
  • Pires AS; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biom
  • Abrantes AM; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biom
  • Gonçalves AC; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Onco
  • Costa SC; Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
  • Varela CL; Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
  • Silva ET; Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal. Electronic address: etavares@ff.uc.pt.
  • Botelho MF; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biom
  • Roleira FMF; Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal. Electronic address: froleira@ff.uc.pt.
Bioorg Med Chem ; 46: 116360, 2021 09 15.
Article em En | MEDLINE | ID: mdl-34425478
Steroidal compounds were proven to be efficient drugs against several types of cancer. Oximes are also chemical structures frequently associated with anticancer activity. The main goal of this work was to combine the two referred structures by synthesizing steroidal oximes and evaluating them in several cancer cell lines. Compounds (17E)-5α-androst-3-en-17-one oxime (3,4 - OLOX), (17E)-3α,4α-epoxy-5α-androstan-17-one oxime (3,4 - EPOX), (17E)-androst-4-en-17-one oxime (4,5 - OLOX) and (17E)-4α,5α-epoxyandrostan-17-one oxime (4,5 - EPOX) were synthesized and their cytotoxicity evaluated in four human cancer cell lines, namely colorectal adenocarcinoma (WiDr), non-small cell lung cancer (H1299), prostate cancer (PC3) and hepatocellular carcinoma (HepG2). A human non-tumour cell line, CCD841 CoN (normal colon cell line) was also used. MTT assay, flow cytometry, fluorescence and hemocompatibility techniques were performed to further analyse the cytotoxicity of the compounds. 3,4 - OLOX was the most effective compound in decreasing tumour cell proliferation in all cell lines, especially in WiDr (IC50 = 9.1 µM) and PC3 (IC50 = 13.8 µM). 4,5 - OLOX also showed promising results in the same cell lines (IC50 = 16.1 µM in WiDr and IC50 = 14.5 µM in PC3). Further studies also revealed that 3,4 - OLOX and 4,5 - OLOX induced a decrease in cell viability accompanied by an increase in cell death, mainly by apoptosis/necroptosis for 3,4 - OLOX in both cell lines and for 4,5 - OLOX in WiDr cells, and by necrosis for 4,5 - OLOX in PC3 cells. These compounds might also exert their cytotoxicity by ROS production and are not toxic for non-tumour CCD841 CoN cells. Additionally, both compounds did not induce haemoglobin release, proving to be safe for intravenous administration. 3,4 - OLOX and 4,5 - OLOX might be the starting point for an optimization program towards the discover of new steroidal oximes for anticancer treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oximas / Esteroides / Desenho de Fármacos / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oximas / Esteroides / Desenho de Fármacos / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article