Your browser doesn't support javascript.
loading
Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.
Benfatto, Salvatore; Serçin, Özdemirhan; Dejure, Francesca R; Abdollahi, Amir; Zenke, Frank T; Mardin, Balca R.
Afiliação
  • Benfatto S; BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany.
  • Serçin Ö; BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany.
  • Dejure FR; BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany.
  • Abdollahi A; Division of Molecular and Translational Radiation Oncology, National Centre for Tumour Diseases (NCT), Heidelberg University Hospital, 69120, Heidelberg, Germany.
  • Zenke FT; Translational Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
  • Mardin BR; BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany. mardin@bio.mx.
Mol Cancer ; 20(1): 111, 2021 08 28.
Article em En | MEDLINE | ID: mdl-34454516
ABSTRACT

BACKGROUND:

Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically target tumor cells. CRISPR viability screens have been widely employed to identify cancer vulnerabilities. However, an approach to systematically infer genetic interactions from viability screens is missing.

METHODS:

Here we describe PAn-canceR Inferred Synthetic lethalities (PARIS), a machine learning approach to identify cancer vulnerabilities. PARIS predicts synthetic lethal (SL) interactions by combining CRISPR viability screens with genomics and transcriptomics data across hundreds of cancer cell lines profiled within the Cancer Dependency Map.

RESULTS:

Using PARIS, we predicted 15 high confidence SL interactions within 549 DNA damage repair (DDR) genes. We show experimental validation of an SL interaction between the tumor suppressor CDKN2A, thymidine phosphorylase (TYMP) and the thymidylate synthase (TYMS), which may allow stratifying patients for treatment with TYMS inhibitors. Using genome-wide mapping of SL interactions for DDR genes, we unraveled a dependency between the aldehyde dehydrogenase ALDH2 and the BRCA-interacting protein BRIP1. Our results suggest BRIP1 as a potential therapeutic target in ~ 30% of all tumors, which express low levels of ALDH2.

CONCLUSIONS:

PARIS is an unbiased, scalable and easy to adapt platform to identify SL interactions that should aid in improving cancer therapy with increased availability of cancer genomics data.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Aprendizado de Máquina / Mutações Sintéticas Letais / Modelos Biológicos / Neoplasias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Aprendizado de Máquina / Mutações Sintéticas Letais / Modelos Biológicos / Neoplasias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article