Your browser doesn't support javascript.
loading
Marine bacterial exopolysaccharide EPS11 inhibits migration and invasion of liver cancer cells by directly targeting collagen I.
Liu, Ge; Liu, Rui; Shan, Yeqi; Sun, Chaomin.
Afiliação
  • Liu G; CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Ch
  • Liu R; CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Ch
  • Shan Y; CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Ch
  • Sun C; CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Ch
J Biol Chem ; 297(4): 101133, 2021 10.
Article em En | MEDLINE | ID: mdl-34461092
ABSTRACT
Many natural polysaccharides have significant anticancer activity with low toxicity, but the complex chemical structures make in-depth studies of the involved mechanisms extremely difficult. The purpose of this study was to investigate the effect of the marine bacterial exopolysaccharide (exopolysaccharide 11 [EPS11]) on liver cancer metastasis to explore the underlying target protein and molecular mechanism. We found that EPS11 significantly suppressed cell adhesion, migration, and invasion in liver cancer cells. Proteomic analysis showed that EPS11 induced downregulation of proteins related to the extracellular matrix-receptor interaction signaling pathway. In addition, the direct pharmacological target of EPS11 was identified as collagen I using cellular thermal shift assays. Surface plasmon resonance and pull-down assays further confirmed the specific binding of EPS11 to collagen I. Moreover, EPS11 was shown to inhibit tumor metastasis by directly modulating collagen I activity via the ß1-integrin-mediated signaling pathway. Collectively, our study demonstrated for the first time that collagen I could be a direct pharmacological target of polysaccharide drugs. Moreover, directly targeting collagen I may be a promising strategy for finding novel carbohydrate-based drugs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polissacarídeos Bacterianos / Movimento Celular / Integrina beta1 / Colágeno Tipo I / Neoplasias Hepáticas / Proteínas de Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polissacarídeos Bacterianos / Movimento Celular / Integrina beta1 / Colágeno Tipo I / Neoplasias Hepáticas / Proteínas de Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article