Your browser doesn't support javascript.
loading
Non-linear dose-response relation between urinary levels of nicotine and its metabolites and cognitive impairment among an elderly population in China.
Li, Tian; Liu, Wei; Yue, Ya-Jun; Lu, Shao-You; Nie, Lu-Lin; Yang, Xi-Fei; Zhu, Qing-Qing; Zhu, Bo; Wang, Lu; Zhu, Fei-Qi; Zhou, Li; Zhang, Jia-Fei; Gao, Er-Wei; He, Kai-Wu; Liu, Li; Ye, Fang; Liu, Jian-Jun; Yuan, Jing; Wang, Lin.
Afiliação
  • Li T; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • Liu W; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
  • Yue YJ; Shenzhen Luohu District Center for Disease Control and Prevention, Shenzhen 518020, Guangdong, China.
  • Lu SY; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
  • Nie LL; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
  • Yang XF; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
  • Zhu QQ; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • Zhu B; Shenzhen Luohu District Center for Disease Control and Prevention, Shenzhen 518020, Guangdong, China.
  • Wang L; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • Zhu FQ; Cognitive Impairment Ward of Neurology Department, the Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen 518020, Guangdong, China.
  • Zhou L; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
  • Zhang JF; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • Gao EW; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • He KW; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
  • Liu L; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • Ye F; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • Liu JJ; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China. Electronic address: junii8@126.com.
  • Yuan J; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
  • Wang L; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical Coll
Ecotoxicol Environ Saf ; 224: 112706, 2021 Aug 27.
Article em En | MEDLINE | ID: mdl-34461317
BACKGROUND: Active smoking and exposure to environmental tobacco smoke may be related to cognitive function decline. We assessed the associations of urinary levels of nicotine and its metabolites with cognitive function. METHODS: A total of 553 elder adults at high risk of cognitive impairment and 2212 gender- and age-matched individuals at low risk of cognitive impairment were selected at a ratio of 1: 4 from the remained individuals (n = 6771) who completed the baseline survey of the Shenzhen Ageing-Related Disorder Cohort, after excluding those with either Alzheimer's disease, Parkinson's syndrome or stroke as well as those with missing data on variables (including active and passive smoking status, Mini-Cog score). Urinary levels of nicotine and its metabolites and cognitive function for all individuals were measured by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and assessed using the Mini-Cog test, respectively. Associations of urinary levels of nicotine and its metabolites with cognitive function were analyzed by conditional logistic regression models. RESULTS: Individuals in the highest tertile of urinary OHCotGluc (OR: 1.52, 95%CI: 1.19-1.93) or NNO (OR: 1.50, 95%CI: 1.16-1.93) levels as well as in the second tertile of urinary ∑Nic level (OR: 1.43, 95%CI: 1.13-1.82) were at higher risk of cognitive impairment compared with those in the corresponding lowest tertile. Restricted cubic spline models revealed the non-linear dose-response relationships between urinary levels of OHCotGluc, NNO or ∑Nic and the risk of cognitive impairment. CONCLUSIONS: Urinary levels of OHCotGluc, NNO or ∑Nic exhibited a non-linear dose-response relationship with cognitive function in the urban elderly.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article