Your browser doesn't support javascript.
loading
Condensed ECM-based nanofilms on highly permeable PET membranes for robust cell-to-cell communications with improved optical clarity.
Choi, Brian; Choi, Jeong-Won; Jin, Hyungwon; Sim, Hye-Rim; Park, Jung-Hoon; Park, Tae-Eun; Kang, Joo H.
Afiliação
  • Choi B; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
  • Choi JW; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
  • Jin H; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
  • Sim HR; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
  • Park JH; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
  • Park TE; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
  • Kang JH; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
Biofabrication ; 13(4)2021 09 17.
Article em En | MEDLINE | ID: mdl-34479224
ABSTRACT
The properties of a semipermeable porous membrane, including pore size, pore density, and thickness, play a crucial role in creating a tissue interface in a microphysiological system (MPS) because it dictates multicellular interactions between different compartments. The small pore-sized membrane has been preferentially used in an MPS for stable cell adhesion and the formation of tissue barriers on the membrane. However, it limited the applicability of the MPS because of the hindered cell transmigration via sparse through-holes and the optical translucence caused by light scattering through pores. Thus, there remain unmet challenges to construct a compartmentalized MPS without those drawbacks. Here we report a submicrometer-thickness (∼500 nm) fibrous extracellular matrix (ECM) film selectively condensed on a large pore-sized track-etched (TE) membrane (10µm-pores) in an MPS device, which enables the generation of functional tissue barriers simultaneously achieving optical transparency, intercellular interactions, and transmigration of cells across the membrane. The condensed ECM fibers uniformly covering the surface and 10µm-pores of the TE membrane permitted sufficient surface areas where a monolayer of the human induced pluripotent stem cell-derived brain endothelial cells is formed in the MPS device. The functional maturation of the blood-brain barrier (BBB) was proficiently achieved due to astrocytic endfeet sheathing the brain endothelial cells through 10µm pores of the condensed-ECM-coated TE (cECMTE) membrane. We also demonstrated the extravasation of human metastatic breast tumor cells through the human BBB on the cECMTE membrane. Thus, the cECMTE membrane integrated with an MPS can be used as a versatile platform for studying various intercellular communications and migration, mimicking the physiological barriers of an organ compartment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comunicação Celular Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comunicação Celular Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article