Your browser doesn't support javascript.
loading
Optimizing hepatitis B virus screening in the United States using a simple demographics-based model.
Ramrakhiani, Nathan S; Chen, Vincent L; Le, Michael; Yeo, Yee Hui; Barnett, Scott D; Waljee, Akbar K; Zhu, Ji; Nguyen, Mindie H.
Afiliação
  • Ramrakhiani NS; Division of Gastroenterology and HepatologyStanford University Medical CenterPalo AltoCaliforniaUSA.
  • Chen VL; Division of Gastroenterology and HepatologyUniversity of MichiganAnn ArborMichiganUSA.
  • Le M; Division of Gastroenterology and HepatologyStanford University Medical CenterPalo AltoCaliforniaUSA.
  • Yeo YH; Division of Gastroenterology and HepatologyStanford University Medical CenterPalo AltoCaliforniaUSA.
  • Barnett SD; Division of General Internal MedicineCedars-Sinai Medical CenterLos AngelesCaliforniaUSA.
  • Waljee AK; Division of Gastroenterology and HepatologyStanford University Medical CenterPalo AltoCaliforniaUSA.
  • Zhu J; Division of Gastroenterology and HepatologyUniversity of MichiganAnn ArborMichiganUSA.
  • Nguyen MH; Division of Gastroenterology and HepatologyVeterans Affairs Ann Arbor Health SystemAnn ArborMichiganUSA.
Hepatology ; 75(2): 430-437, 2022 02.
Article em En | MEDLINE | ID: mdl-34496066
BACKGROUND AND AIMS: Chronic hepatitis B (CHB) affects >290 million persons globally, and only 10% have been diagnosed, presenting a severe gap that must be addressed. We developed logistic regression (LR) and machine learning (ML; random forest) models to accurately identify patients with HBV, using only easily obtained demographic data from a population-based data set. APPROACH AND RESULTS: We identified participants with data on HBsAg, birth year, sex, race/ethnicity, and birthplace from 10 cycles of the National Health and Nutrition Examination Survey (1999-2018) and divided them into two cohorts: training (cycles 2, 3, 5, 6, 8, and 10; n = 39,119) and validation (cycles 1, 4, 7, and 9; n = 21,569). We then developed and tested our two models. The overall cohort was 49.2% male, 39.7% White, 23.2% Black, 29.6% Hispanic, and 7.5% Asian/other, with a median birth year of 1973. In multivariable logistic regression, the following factors were associated with HBV infection: birth year 1991 or after (adjusted OR [aOR], 0.28; p < 0.001); male sex (aOR, 1.49; p = 0.0080); Black and Asian/other versus White (aOR, 5.23 and 9.13; p < 0.001 for both); and being USA-born (vs. foreign-born; aOR, 0.14; p < 0.001). We found that the ML model consistently outperformed the LR model, with higher area under the receiver operating characteristic values (0.83 vs. 0.75 in validation cohort; p < 0.001) and better differentiation of high- and low-risk persons. CONCLUSIONS: Our ML model provides a simple, targeted approach to HBV screening, using only easily obtained demographic data.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Logísticos / Hepatite B Crônica / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Female / Humans / Male País/Região como assunto: America do norte Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Logísticos / Hepatite B Crônica / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Female / Humans / Male País/Região como assunto: America do norte Idioma: En Ano de publicação: 2022 Tipo de documento: Article