Your browser doesn't support javascript.
loading
Caffeic acid: an antioxidant with novel antisickling properties.
Kassa, Tigist; Whalin, James G; Richards, Mark P; Alayash, Abdu I.
Afiliação
  • Kassa T; Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research Food and Drug Administration (FDA), Silver Spring, MD, USA.
  • Whalin JG; Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery, University of Wisconsin-Madison, WI, USA.
  • Richards MP; Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery, University of Wisconsin-Madison, WI, USA.
  • Alayash AI; Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research Food and Drug Administration (FDA), Silver Spring, MD, USA.
FEBS Open Bio ; 11(12): 3293-3303, 2021 12.
Article em En | MEDLINE | ID: mdl-34510823
ABSTRACT
It is well documented that caffeic acid (3,4-dihydroxycinnamic acid) (CA) interacts with and inhibits the oxidative reactions of myoglobin (Mb) and hemoglobin (Hb), and this interaction underlies its antioxidative action in meat. Sickle cell hemoglobin (HbS) is known for its tendency to oxidize more readily than normal HbA in the presence of hydrogen peroxide (H2 O2 ), which leads to a more persistent and highly oxidizing ferryl Hb (HbFe4+ ). We have investigated the effects of CA on HbS oxidation intermediates, specifically on the ferric/ferryl forms. At a low concentration of H2 O2 (0.5-fold over heme), we observed a fivefold reduction in the amount of HbFe4+ accumulated in a mixture of ferric and H2 O2 solution. Higher levels of H2 O2 (onefold and twofold over heme) led to a lesser threefold and twofold reduction in the content of HbFe4+ , respectively, possibly due to the saturation of the binding sites on the Hb molecule. The most intriguing finding was that when 5-molar excess CA over heme was used, and a considerable increase in the delay time of HbS polymerization to approximately 200 s was observed. This delay in polymerization of HbS is theoretically sufficient to avoid microcapillary blockage and prevent vasoconstrictions in vivo. Mass spectrometry analysis indicated that CA was more extensively covalently bonded to ßCys93 than to ßCys112 and αCys104 . The dual antioxidant and antisickling properties of CA may be explored further to maximize its therapeutic potential in SCD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Cafeicos / Hemoglobina Falciforme Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Cafeicos / Hemoglobina Falciforme Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article