Your browser doesn't support javascript.
loading
Fluid dynamic simulation suggests hopping locomotion in the Ordovician trilobite Placoparia.
Esteve, Jorge; López, Matheo; Ramírez, Carlos-Guillermo; Gómez, Iván.
Afiliação
  • Esteve J; Departamento de Geociencias, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia; Departamento de Geodinámica, Estratigrafía y Paleontología Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Calle José Antonio Nováis, 12 E-28040 Madrid, Spain. Electronic address: jorge
  • López M; Departamento de Geociencias, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia; Departamento de Ingeniería Mecánica, Universidad de los Andes, Bogotá, Colombia.
  • Ramírez CG; Departamento de Ingeniería Mecánica, Universidad de los Andes, Bogotá, Colombia.
  • Gómez I; Departamento de Ingeniería Mecánica, Universidad de los Andes, Bogotá, Colombia.
J Theor Biol ; 531: 110916, 2021 12 21.
Article em En | MEDLINE | ID: mdl-34562458
Colonization of the water column by animals occurred gradually during the early Palaeozoic. However, the morphological and functional changes that took place during this colonization are poorly understood. The fossil record provides clear evidence of animals that were well adapted for swimming near the seafloor or in the open ocean, but recognising transitional forms is more problematic. Trilobites are a good model to explore the colonization of marine ecosystems. Here, we use computational fluid dynamics (CFD) to test between competing functional hypotheses in the Ordovician trilobite Placoparia. The CFD simulations exhibits hydrodynamics that promote detachment from the seafloor but also promote return to the seafloor following detachment, this is compatible with hopping locomotion. The results suggest that Placopara was not able to swim, but its hydrodynamics allowed it to hop long distances. This is consistent with the fossil record, as some ichnofossils show evidence of hopping. This type of locomotion could be useful to avoid predators as an escape mechanism. In addition, CFD simulation shows how the morphology of Placoparia is adapted to protect anterior appendices of the trunk and generate a ventral vortex that send food particles directly to the trilobite mouth. Adaptations in Placoparia allowed the first steps to evolved a new ecological habitat and consequently nektonization during the GOBE.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artrópodes Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artrópodes Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article