Your browser doesn't support javascript.
loading
Persistent mTORC1 activation via Depdc5 deletion results in spontaneous hepatocellular carcinoma but does not exacerbate carcinogen- and high-fat diet-induced hepatic carcinogenesis in mice.
Xu, Lin; Yang, Chenyan; Wang, Jing; Li, Zun; Huang, Rong; Ma, Honghui; Ma, Jie; Wang, Qingzhi; Xiong, Xiwen.
Afiliação
  • Xu L; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Yang C; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Wang J; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Li Z; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Huang R; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Ma H; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Ma J; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
  • Wang Q; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
  • Xiong X; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China. Electronic address: xwxiong@xxmu.edu.cn.
Biochem Biophys Res Commun ; 578: 142-149, 2021 11 12.
Article em En | MEDLINE | ID: mdl-34562654
The mechanistic target of rapamycin complex 1 (mTORC1) acts as a central regulator of metabolic pathways that drive cellular growth. Abnormal activation of mTORC1 occurs at high frequency in human and mouse hepatocellular carcinoma (HCC). DEP domain-containing protein 5 (DEPDC5), a component of GATOR1 complex, is a repressor of amino acid-sensing branch of the mTORC1 pathway. In the current study, we found that persistent activation of hepatic mTORC1 signaling caused by Depdc5 ablation was sufficient to induce a pathological program of liver damage, inflammation and fibrosis that triggers spontaneous HCC development. Take advantage of the combinatory treatment with a single dose of diethylnitrosamine (DEN) and chronic feeding with high-fat diet (HFD), we demonstrated that hepatic depdc5 deletion did not aggravate DEN&HFD induced liver tumorigenesis, probably due to its protective effects on diet-induced liver steatosis. In addition, we further showed that chronic rapamycin treatment did not have any apparent tumor-suppressing effects on DEN&HFD treated control mice, whereas it dramatically reduced the tumor burden in mice with hepatic Depdc5 ablation. This study provides the novel in vivo evidence for Depdc5 deletion mediated mTORC1 hyperactivation in liver tumorigenesis caused by aging or DEN&HFD treatment. Moreover, our findings also propose that pharmacological inhibition of mTORC1 signaling maybe a promising strategy to treat HCC patients with mutations in DEPDC5 gene.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Proteínas Ativadoras de GTPase / Dietilnitrosamina / Fígado Gorduroso / Dieta Hiperlipídica / Alvo Mecanístico do Complexo 1 de Rapamicina / Fígado Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Proteínas Ativadoras de GTPase / Dietilnitrosamina / Fígado Gorduroso / Dieta Hiperlipídica / Alvo Mecanístico do Complexo 1 de Rapamicina / Fígado Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article