Your browser doesn't support javascript.
loading
Characterization and function analysis of Epinephelus coioides Hsp40 response to Vibrio alginolyticus and SGIV infection.
Chen, He-Jia; Li, Pin-Hong; Yang, Yun; Xin, Xiao-Hong; Ou, Yan; Wei, Jing-Guang; Huang, You-Hua; Huang, Xiao-Hong; Qin, Qi-Wei; Sun, Hong-Yan.
Afiliação
  • Chen HJ; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Department of Biology, College of Scienc
  • Li PH; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
  • Yang Y; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
  • Xin XH; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
  • Ou Y; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
  • Wei JG; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
  • Huang YH; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
  • Huang XH; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
  • Qin QW; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotec
  • Sun HY; Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China. Electronic address: hongyanlucky@scau.ed
Fish Shellfish Immunol ; 118: 396-404, 2021 Nov.
Article em En | MEDLINE | ID: mdl-34571156
ABSTRACT
Heat shock protein 40 (Hsp40), a member of Heat shock proteins (Hsps) family, plays a crucial role in regulation of cell proliferation, survival and apoptosis in mammals. In this study, Hsp40, EcHsp40, was identified from Epinephelus coioides, an economically important marine-cultured fish in China and Southeast Asian counties. The full length of EcHsp40 was 2236 bp in length containing a 1026 bp open reading frame (ORF) encoding 341 amino acids, with a molecular mass of 37.88 kDa and a theoretical pI of 9.09. EcHsp40 has two conserved domains DnaJ and DnaJ_C. EcHsp40 mRNA was detected in all tissues examined, and the expression was significantly up-regulated response to challenged with Vibrio alginolyticus or Singapore grouper iridovirus (SGIV), one of the important pathogens of marine fish. EcHsp40 was distributed in both the cytoplasm and nucleus, over-expression of EcHsp40 can inhibit the activity of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), significantly promote SGIV-induced apoptosis, intracellular caspase-3 activity and viral replication, suggesting that the EcHsp40 may play an important role in pathogenic stimulation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bass / Ranavirus / Iridovirus / Infecções por Vírus de DNA / Doenças dos Peixes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bass / Ranavirus / Iridovirus / Infecções por Vírus de DNA / Doenças dos Peixes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article