Your browser doesn't support javascript.
loading
Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound.
Giovannucci, Tatiana A; Salomons, Florian A; Haraldsson, Martin; Elfman, Lotta H M; Wickström, Malin; Young, Patrick; Lundbäck, Thomas; Eirich, Jürgen; Altun, Mikael; Jafari, Rozbeh; Gustavsson, Anna-Lena; Johnsen, John Inge; Dantuma, Nico P.
Afiliação
  • Giovannucci TA; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
  • Salomons FA; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
  • Haraldsson M; Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm, Sweden.
  • Elfman LHM; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
  • Wickström M; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
  • Young P; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
  • Lundbäck T; Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm, Sweden.
  • Eirich J; Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
  • Altun M; Science for Life Laboratory, Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Stockholm, Sweden.
  • Jafari R; Science for Life Laboratory, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Solna, Stockholm, Sweden.
  • Gustavsson AL; Institute of Plant Biology and Biotechnology, University of Muenster, 48143, Muenster, Germany.
  • Johnsen JI; Science for Life Laboratory, Department of Laboratory Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
  • Dantuma NP; Science for Life Laboratory, Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Stockholm, Sweden.
Cell Death Dis ; 12(10): 914, 2021 10 06.
Article em En | MEDLINE | ID: mdl-34615851
Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NAD(P)H Desidrogenase (Quinona) / Ubiquitina / Complexo de Endopeptidases do Proteassoma Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NAD(P)H Desidrogenase (Quinona) / Ubiquitina / Complexo de Endopeptidases do Proteassoma Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article