Your browser doesn't support javascript.
loading
Towards High Performance Li-S Batteries via Sulfonate-Rich COF-Modified Separator.
Xu, Jie; An, Shuhao; Song, Xianyu; Cao, Yongjie; Wang, Nan; Qiu, Xuan; Zhang, Yu; Chen, Jiawei; Duan, Xianli; Huang, Jianhang; Li, Wei; Wang, Yonggang.
Afiliação
  • Xu J; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • An S; Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
  • Song X; Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404020, China.
  • Cao Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Wang N; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Qiu X; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Zhang Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Chen J; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Duan X; Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404020, China.
  • Huang J; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Li W; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Wang Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
Adv Mater ; 33(49): e2105178, 2021 Dec.
Article em En | MEDLINE | ID: mdl-34622528
Lithium-sulfur (Li-S) batteries are held great promise for next-generation high-energy-density devices; however, polysulfide shuttle and Li-dendrite growth severely hinders their commercial production. Herein, a sulfonate-rich COF (SCOF-2) is designed, synthesized, and used to modify the separator of Li-S batteries, providing a solution for the above challenges. It is found that the SCOF-2 features stronger electronegativity and larger interlayer spacing than that of none/monosulfonate COFs, which can facilitate the Li+ migration and alleviate the formation of Li-dendrites. Density functional theory (DFT) calculations and in situ Raman analysis demonstrate that the SCOF-2 possesses a narrow bandgap and strong interaction on sulfur species, thereby suppressing self-discharge behavior. As a result, the modified batteries deliver an ultralow attenuation rate of 0.047% per cycle over 800 cycles at 1 C, and excellent anti-self-discharge performance by a low-capacity attenuation of 6.0% over one week. Additionally, even with the high-sulfur-loading cathode (3.2-8.2 mgs cm-2 ) and lean electrolyte (5 µL mgs -1 ), the batteries still exhibit ≈80% capacity retention over 100 cycles, showing great potential for practical application.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article