Your browser doesn't support javascript.
loading
Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile.
Arrieta-Ortiz, Mario L; Immanuel, Selva Rupa Christinal; Turkarslan, Serdar; Wu, Wei-Ju; Girinathan, Brintha P; Worley, Jay N; DiBenedetto, Nicholas; Soutourina, Olga; Peltier, Johann; Dupuy, Bruno; Bry, Lynn; Baliga, Nitin S.
Afiliação
  • Arrieta-Ortiz ML; Institute for Systems Biology, Seattle, WA 98109, USA.
  • Immanuel SRC; Institute for Systems Biology, Seattle, WA 98109, USA.
  • Turkarslan S; Institute for Systems Biology, Seattle, WA 98109, USA.
  • Wu WJ; Institute for Systems Biology, Seattle, WA 98109, USA.
  • Girinathan BP; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Worley JN; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • DiBenedetto N; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Soutourina O; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-yvette 91198, France.
  • Peltier J; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-yvette 91198, France.
  • Dupuy B; Laboratoire Pathogenèse des Bactéries anaérobies, Institut Pasteur, Université de Paris, UMR CNRS 2001, Paris 75015, France.
  • Bry L; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Baliga NS; Institute for Systems Biology, Seattle, WA 98109, USA. Electronic address: nitin.baliga@isbscience.org.
Cell Host Microbe ; 29(11): 1709-1723.e5, 2021 11 10.
Article em En | MEDLINE | ID: mdl-34637780
We present predictive models for comprehensive systems analysis of Clostridioides difficile, the etiology of pseudomembranous colitis. By leveraging 151 published transcriptomes, we generated an EGRIN model that organizes 90% of C. difficile genes into a transcriptional regulatory network of 297 co-regulated modules, implicating genes in sporulation, carbohydrate transport, and metabolism. By advancing a metabolic model through addition and curation of metabolic reactions including nutrient uptake, we discovered 14 amino acids, diverse carbohydrates, and 10 metabolic genes as essential for C. difficile growth in the intestinal environment. Finally, we developed a PRIME model to uncover how EGRIN-inferred combinatorial gene regulation by transcription factors, such as CcpA and CodY, modulates essential metabolic processes to enable C. difficile growth relative to commensal colonization. The C. difficile interactive web portal provides access to these model resources to support collaborative systems-level studies of context-specific virulence mechanisms in C. difficile.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Clostridioides difficile Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Clostridioides difficile Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article