Your browser doesn't support javascript.
loading
Magnetic Field Induced Quantum Spin Liquid in the Two Coupled Trillium Lattices of K_{2}Ni_{2}(SO_{4})_{3}.
Zivkovic, Ivica; Favre, Virgile; Salazar Mejia, Catalina; Jeschke, Harald O; Magrez, Arnaud; Dabholkar, Bhupen; Noculak, Vincent; Freitas, Rafael S; Jeong, Minki; Hegde, Nagabhushan G; Testa, Luc; Babkevich, Peter; Su, Yixi; Manuel, Pascal; Luetkens, Hubertus; Baines, Christopher; Baker, Peter J; Wosnitza, Jochen; Zaharko, Oksana; Iqbal, Yasir; Reuther, Johannes; Rønnow, Henrik M.
Afiliação
  • Zivkovic I; Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Favre V; Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Salazar Mejia C; Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
  • Jeschke HO; Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan.
  • Magrez A; Crystal Growth Facility, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Dabholkar B; Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras, Chennai 600036, India.
  • Noculak V; Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Freitas RS; Helmholtz-Zentrum für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
  • Jeong M; 7 Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, Brazil.
  • Hegde NG; School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
  • Testa L; Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Babkevich P; Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Su Y; Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Manuel P; Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstrasse 1, D-85747 Garching, Germany.
  • Luetkens H; ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom.
  • Baines C; Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland.
  • Baker PJ; Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland.
  • Wosnitza J; ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom.
  • Zaharko O; Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
  • Iqbal Y; Institut für Festkörper- und Materialphysik, TU Dresden, 01062 Dresden, Germany.
  • Reuther J; Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5253 Villigen, Switzerland.
  • Rønnow HM; Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras, Chennai 600036, India.
Phys Rev Lett ; 127(15): 157204, 2021 Oct 08.
Article em En | MEDLINE | ID: mdl-34677991
ABSTRACT
Quantum spin liquids are exotic states of matter that form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of K_{2}Ni_{2}(SO_{4})_{3} forming a three-dimensional network of Ni^{2+} spins. Using density functional theory calculations, we show that this network consists of two interconnected spin-1 trillium lattices. In the absence of a magnetic field, magnetization, specific heat, neutron scattering, and muon spin relaxation experiments demonstrate a highly correlated and dynamic state, coexisting with a peculiar, very small static component exhibiting a strongly renormalized moment. A magnetic field B≳4 T diminishes the ordered component and drives the system into a pure quantum spin liquid state. This shows that a system of interconnected S=1 trillium lattices exhibits a significantly elevated level of geometrical frustration.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article