Your browser doesn't support javascript.
loading
A Novel Schiff Base-Modified Dialdehyde Cellulose-Based Fluorescent Probe for Al3+ and Its Application in Environmental Analysis.
Meng, Zhiyuan; Yin, Jie; Li, Mingxin; Liang, Yueyin; Wang, Xiaoyuan; Wu, Yangmei; Kou, Jiali; Wang, Zhonglong; Yang, Yiqin.
Afiliação
  • Meng Z; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Yin J; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Li M; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Liang Y; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Wang X; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Wu Y; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Kou J; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Wang Z; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Yang Y; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Macromol Rapid Commun ; 43(2): e2100608, 2022 Jan.
Article em En | MEDLINE | ID: mdl-34699661
Cellulose is the most abundant natural polymer with good biodegradability and biocompatibility. In this paper, a novel fluorescent probe DAC-SD-NA for aluminum (Al3+ ) detection is successfully synthesized based on dialdehyde cellulose (DAC). DAC-SD-NA exhibited a remarkable "turn-on" fluorescence response to Al3+ in a wide pH range, and the fluorescence color of DAC-SD-NA solution turned from colorless to bright blue at the presence of Al3+ . The detection limit for Al3+ is computed to be 6.06×10-7 m. The reaction mechanism of DAC-SD-NA towards Al3+ is confirmed by Job's plot, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. In view of DAC-SD-NA exhibited good sensitivity and selectivity, it is applied to detect Al3+ in real water. What's more, DAC-SD-NA-loaded fluorescent hydrogel can serve as a convenient tool for the detection of Al3+ .
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bases de Schiff / Corantes Fluorescentes Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bases de Schiff / Corantes Fluorescentes Idioma: En Ano de publicação: 2022 Tipo de documento: Article