Your browser doesn't support javascript.
loading
Energetic Basis for Exercise-Induced Pulmonary Congestion in Heart Failure With Preserved Ejection Fraction.
Burrage, Matthew K; Hundertmark, Moritz; Valkovic, Ladislav; Watson, William D; Rayner, Jennifer; Sabharwal, Nikant; Ferreira, Vanessa M; Neubauer, Stefan; Miller, Jack J; Rider, Oliver J; Lewis, Andrew J M.
Afiliação
  • Burrage MK; University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (M.K.B., M.H., L.V., W.D.W., J.R., V.M.F., S.N., O.J.R., A.J.M.L.), University of Oxford, UK.
  • Hundertmark M; University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (M.K.B., M.H., L.V., W.D.W., J.R., V.M.F., S.N., O.J.R., A.J.M.L.), University of Oxford, UK.
  • Valkovic L; University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (M.K.B., M.H., L.V., W.D.W., J.R., V.M.F., S.N., O.J.R., A.J.M.L.), University of Oxford, UK.
  • Watson WD; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.).
  • Rayner J; University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (M.K.B., M.H., L.V., W.D.W., J.R., V.M.F., S.N., O.J.R., A.J.M.L.), University of Oxford, UK.
  • Sabharwal N; University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (M.K.B., M.H., L.V., W.D.W., J.R., V.M.F., S.N., O.J.R., A.J.M.L.), University of Oxford, UK.
  • Ferreira VM; Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, UK (J.R., N.S., S.N., O.J.R., A.J.M.L.).
  • Neubauer S; Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, UK (J.R., N.S., S.N., O.J.R., A.J.M.L.).
  • Miller JJ; University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (M.K.B., M.H., L.V., W.D.W., J.R., V.M.F., S.N., O.J.R., A.J.M.L.), University of Oxford, UK.
  • Rider OJ; University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (M.K.B., M.H., L.V., W.D.W., J.R., V.M.F., S.N., O.J.R., A.J.M.L.), University of Oxford, UK.
  • Lewis AJM; Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, UK (J.R., N.S., S.N., O.J.R., A.J.M.L.).
Circulation ; 144(21): 1664-1678, 2021 11 23.
Article em En | MEDLINE | ID: mdl-34743560
ABSTRACT

BACKGROUND:

Transient pulmonary congestion during exercise is emerging as an important determinant of reduced exercise capacity in heart failure with preserved ejection fraction (HFpEF). We sought to determine whether an abnormal cardiac energetic state underpins this process.

METHODS:

We recruited patients across the spectrum of diastolic dysfunction and HFpEF (controls, n=11; type 2 diabetes, n=9; HFpEF, n=14; and severe diastolic dysfunction attributable to cardiac amyloidosis, n=9). Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to ATP ratio. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging and echocardiography and lung water using magnetic resonance proton density mapping. Studies were performed at rest and during submaximal exercise using a magnetic resonance imaging ergometer.

RESULTS:

Paralleling the stepwise decline in diastolic function across the groups (E/e' ratio; P<0.001) was an increase in NT-proBNP (N-terminal pro-brain natriuretic peptide; P<0.001) and a reduction in phosphocreatine/ATP ratio (control, 2.15 [2.09, 2.29]; type 2 diabetes, 1.71 [1.61, 1.91]; HFpEF, 1.66 [1.44, 1.89]; cardiac amyloidosis, 1.30 [1.16, 1.53]; P<0.001). During 20-W exercise, lower left ventricular diastolic filling rates (r=0.58; P<0.001), lower left ventricular diastolic reserve (r=0.55; P<0.001), left atrial dilatation (r=-0.52; P<0.001), lower right ventricular contractile reserve (right ventricular ejection fraction change, r=0.57; P<0.001), and right atrial dilation (r=-0.71; P<0.001) were all linked to lower phosphocreatine/ATP ratio. Along with these changes, pulmonary proton density mapping revealed transient pulmonary congestion in patients with HFpEF (+4.4% [0.5, 6.4]; P=0.002) and cardiac amyloidosis (+6.4% [3.3, 10.0]; P=0.004), which was not seen in healthy controls (-0.1% [-1.9, 2.1]; P=0.89) or type 2 diabetes without HFpEF (+0.8% [-1.7, 1.9]; P=0.82). The development of exercise-induced pulmonary congestion was associated with lower phosphocreatine/ATP ratio (r=-0.43; P=0.004).

CONCLUSIONS:

A gradient of myocardial energetic deficit exists across the spectrum of HFpEF. Even at low workload, this energetic deficit is related to markedly abnormal exercise responses in all 4 cardiac chambers, which is associated with detectable pulmonary congestion. The findings support an energetic basis for transient pulmonary congestion in HFpEF.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Exercício Físico / Circulação Pulmonar / Insuficiência Cardíaca Diastólica / Hiperemia Tipo de estudo: Diagnostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Exercício Físico / Circulação Pulmonar / Insuficiência Cardíaca Diastólica / Hiperemia Tipo de estudo: Diagnostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2021 Tipo de documento: Article