Your browser doesn't support javascript.
loading
G-computation and doubly robust standardisation for continuous-time data: A comparison with inverse probability weighting.
Chatton, Arthur; Borgne, Florent Le; Leyrat, Clémence; Foucher, Yohann.
Afiliação
  • Chatton A; INSERM UMR 1246 - SPHERE, 27045Nantes University, Tours University, France.
  • Borgne FL; IDBC-A2COM, Pacé, France.
  • Leyrat C; INSERM UMR 1246 - SPHERE, 27045Nantes University, Tours University, France.
  • Foucher Y; IDBC-A2COM, Pacé, France.
Stat Methods Med Res ; 31(4): 706-718, 2022 04.
Article em En | MEDLINE | ID: mdl-34861799
In time-to-event settings, g-computation and doubly robust estimators are based on discrete-time data. However, many biological processes are evolving continuously over time. In this paper, we extend the g-computation and the doubly robust standardisation procedures to a continuous-time context. We compare their performance to the well-known inverse-probability-weighting estimator for the estimation of the hazard ratio and restricted mean survival times difference, using a simulation study. Under a correct model specification, all methods are unbiased, but g-computation and the doubly robust standardisation are more efficient than inverse-probability-weighting. We also analyse two real-world datasets to illustrate the practical implementation of these approaches. We have updated the R package RISCA to facilitate the use of these methods and their dissemination.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article