Your browser doesn't support javascript.
loading
Bridging steady-state and stick-slip fracture propagation in glassy polymers.
Nziakou, Yannick; George, Matthieu; Fischer, Guillaume; Bresson, Bruno; Tiennot, Mathilde; Roux, Stephane; Halary, Jean Louis; Ciccotti, Matteo.
Afiliação
  • Nziakou Y; Laboratoire Sciences et Ingénierie de la Matière Molle (SIMM), PSL Research University, Sorbonne Université, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris cedex 05, France. matteo.ciccotti@espci.fr.
  • George M; Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Universitéde Montpellier, FR-34095, Montpellier, France.
  • Fischer G; Laboratoire Sciences et Ingénierie de la Matière Molle (SIMM), PSL Research University, Sorbonne Université, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris cedex 05, France. matteo.ciccotti@espci.fr.
  • Bresson B; Laboratoire Sciences et Ingénierie de la Matière Molle (SIMM), PSL Research University, Sorbonne Université, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris cedex 05, France. matteo.ciccotti@espci.fr.
  • Tiennot M; Laboratoire Sciences et Ingénierie de la Matière Molle (SIMM), PSL Research University, Sorbonne Université, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris cedex 05, France. matteo.ciccotti@espci.fr.
  • Roux S; Université Paris-Saclay, ENS Paris-Saclay, CNRS, Laboratoire de Mécanique et Technologie (LMT), F-91190, Gif-sur-Yvette, France.
  • Halary JL; Laboratoire Sciences et Ingénierie de la Matière Molle (SIMM), PSL Research University, Sorbonne Université, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris cedex 05, France. matteo.ciccotti@espci.fr.
  • Ciccotti M; Laboratoire Sciences et Ingénierie de la Matière Molle (SIMM), PSL Research University, Sorbonne Université, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris cedex 05, France. matteo.ciccotti@espci.fr.
Soft Matter ; 18(4): 793-806, 2022 Jan 26.
Article em En | MEDLINE | ID: mdl-34939640
ABSTRACT
Both an experimental and a theoretical investigation of fracture propagation mechanisms acting at the process zone scale in glassy polymers are presented. The main aim is to establish a common modeling for different kinds of glassy polymers presenting either steady-state fracture propagation or stick-slip fracture propagation or both, depending on loading conditions and sample shapes. From the experimental point of view, new insights are provided by the in situ AFM measurements of viscoplastic strain fields acting within the micrometric process zone in a brittle epoxy resin, which highlight an extremely slow unexpected steady-state regime with finite plastic strains of about 30% around a blunt crack tip, accompanied by propagating shear lips. From the theoretical point of view, we apply to glassy polymers some recently developed models for describing soft dissipative fracture that are pertinent with the observed finite strains. We propose a unified modeling of fracture energy for both the steady-state and stick-slip fracture propagation based on the evaluation of energy dissipation density at a characteristic strain rate induced in the process zone by a competition between the crack propagation velocity and the macroscopic sample loading rate.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article