Your browser doesn't support javascript.
loading
Mithramycin suppresses tumor growth by regulating CD47 and PD-L1 expression.
Gong, Jianhua; Ji, Yuying; Liu, Xiujun; Zheng, Yanbo; Zhen, Yongsu.
Afiliação
  • Gong J; Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210
  • Ji Y; Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210
  • Liu X; Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210
  • Zheng Y; Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210
  • Zhen Y; Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210
Biochem Pharmacol ; 197: 114894, 2022 03.
Article em En | MEDLINE | ID: mdl-34968486
ABSTRACT
Mithramycin A (MIT) has reacquired extensive research attention due to its anti-solid tumor activity and improved pharmacological production. Mechanismly, MIT was broadly used as a c-Myc inhibitor, and c-Myc regulated CD47 and PD-L1 expression which has been demonstrated. However, how MIT affects immune check-point molecules remains unknown. In this study, we found CD47 expression was higher in melanoma of pan-tissue array. MIT inhibited CD47 expression both in mRNA and protein level in melanoma cells (SK-MEL-28 and B16). MIT inhibited c-Myc, Sp-1 and CD47 expression in a concentration-dependent way. MIT inhibited the surface CD47 expression and promoted the phagocytosis of SK-MEL-28 cells by THP-1 cells. We found MIT inhibited tumor growth in melanoma allograft mice and CD47 expression in tumor mass. We also found MIT upregulated PD-L1 expression in cancer cells possibly via inhibiting PD-L1 ubiquitination, increasing ROS and IFN-γ. Combination of MIT and anti-PD-1 antibody showed enhanced antitumor activity compared to MIT and anti-PD-1 antibody alone in MC38 allograft mice. Using immune checkpoint array we found MIT inhibited expression of FasL and Galectin3. These results suggest that MIT inhibits CD47 expression, while improves PD-L1 expression. Furthermore, the combination of MIT and anti-PD-1 antibody exerts potent antitumor effect.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Melanoma Experimental / Plicamicina / Antígeno CD47 / Antígeno B7-H1 / Antibióticos Antineoplásicos Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Melanoma Experimental / Plicamicina / Antígeno CD47 / Antígeno B7-H1 / Antibióticos Antineoplásicos Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article