Your browser doesn't support javascript.
loading
Toward Orbital-Free Density Functional Theory with Small Data Sets and Deep Learning.
Ryczko, Kevin; Wetzel, Sebastian J; Melko, Roger G; Tamblyn, Isaac.
Afiliação
  • Ryczko K; Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
  • Wetzel SJ; 1QB Information Technologies (1QBit), Vancouver, British Columbia V6E 4B1, Canada.
  • Melko RG; Vector Institute for Artificial Intelligence, Toronto, Ontario M5G 1M1, Canada.
  • Tamblyn I; Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
J Chem Theory Comput ; 18(2): 1122-1128, 2022 Feb 08.
Article em En | MEDLINE | ID: mdl-34995061
We use voxel deep neural networks to predict energy densities and functional derivatives of electron kinetic energies for the Thomas-Fermi model and Kohn-Sham density functional theory calculations. We show that the ground-state electron density can be found via direct minimization for a graphene lattice without any projection scheme using a voxel deep neural network trained with the Thomas-Fermi model. Additionally, we predict the kinetic energy of a graphene lattice within chemical accuracy after training from only two Kohn-Sham density functional theory (DFT) calculations. We identify an important sampling issue inherent in Kohn-Sham DFT calculations and propose future work to rectify this problem. Furthermore, we demonstrate an alternative, functional derivative-free, Monte Carlo based orbital-free density functional theory algorithm to calculate an accurate two-electron density in a double inverted Gaussian potential with a machine-learned kinetic energy functional.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article