Your browser doesn't support javascript.
loading
DeepNull models non-linear covariate effects to improve phenotypic prediction and association power.
McCaw, Zachary R; Colthurst, Thomas; Yun, Taedong; Furlotte, Nicholas A; Carroll, Andrew; Alipanahi, Babak; McLean, Cory Y; Hormozdiari, Farhad.
Afiliação
  • McCaw ZR; Google Health, Palo Alto, CA, USA.
  • Colthurst T; Google Health, Cambridge, MA, USA.
  • Yun T; Google Health, Cambridge, MA, USA.
  • Furlotte NA; Google Health, Palo Alto, CA, USA.
  • Carroll A; Google Health, Palo Alto, CA, USA.
  • Alipanahi B; Google Health, Palo Alto, CA, USA.
  • McLean CY; Google Health, Cambridge, MA, USA. cym@google.com.
  • Hormozdiari F; Google Health, Cambridge, MA, USA. fhormoz@google.com.
Nat Commun ; 13(1): 241, 2022 01 11.
Article em En | MEDLINE | ID: mdl-35017556
Genome-wide association studies (GWASs) examine the association between genotype and phenotype while adjusting for a set of covariates. Although the covariates may have non-linear or interactive effects, due to the challenge of specifying the model, GWAS often neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and interactive covariate effects using a deep neural network. In analyses of simulated and real data, we demonstrate that DeepNull maintains tight control of the type I error while increasing statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes from the UK Biobank (n = 370K), DeepNull discovered more hits (+6%) and loci (+7%), on average, than conventional association analyses, many of which are biologically plausible or have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic prediction (+23% on average).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article