Your browser doesn't support javascript.
loading
Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure.
Keceli, Gizem; Gupta, Ashish; Sourdon, Joevin; Gabr, Refaat; Schär, Michael; Dey, Swati; Tocchetti, Carlo G; Stuber, Annina; Agrimi, Jacopo; Zhang, Yi; Leppo, Michelle; Steenbergen, Charles; Lai, Shenghan; Yanek, Lisa R; O'Rourke, Brian; Gerstenblith, Gary; Bottomley, Paul A; Wang, Yibin; Paolocci, Nazareno; Weiss, Robert G.
Afiliação
  • Keceli G; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Gupta A; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Sourdon J; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Gabr R; Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) (R.G.).
  • Schär M; Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (M.S., Y.Z., P.A.B., R.G.W.).
  • Dey S; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (S.D.).
  • Tocchetti CG; Department of Translational Medical Sciences, Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy (C.G.T.).
  • Stuber A; École Polytechnique Fédérale de Lausanne, Switzerland (A.S.).
  • Agrimi J; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Zhang Y; Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (M.S., Y.Z., P.A.B., R.G.W.).
  • Leppo M; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Steenbergen C; Department of Pathology (C.S.), Johns Hopkins University School of Medicine, Baltimore, MD.
  • Lai S; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD (S.L.).
  • Yanek LR; Division of General Internal Medicine, Department of Medicine (L.R.Y.), Johns Hopkins University School of Medicine, Baltimore, MD.
  • O'Rourke B; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Gerstenblith G; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Bottomley PA; Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (M.S., Y.Z., P.A.B., R.G.W.).
  • Wang Y; Departments of Anesthesiology and Medicine, University of California at Los Angeles (Y.W.).
  • Paolocci N; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.K., A.G., J.S., J.A., M.L., B.O., G.G., N.P., R.G.W.).
  • Weiss RG; Department of Biomedical Sciences, University of Padova, Italy (N.P.).
Circ Res ; 130(5): 741-759, 2022 03 04.
Article em En | MEDLINE | ID: mdl-35109669
ABSTRACT

BACKGROUND:

Abnormalities in cardiac energy metabolism occur in heart failure (HF) and contribute to contractile dysfunction, but their role, if any, in HF-related pathologic remodeling is much less established. CK (creatine kinase), the primary muscle energy reserve reaction which rapidly provides ATP at the myofibrils and regenerates mitochondrial ADP, is down-regulated in experimental and human HF. We tested the hypotheses that pathologic remodeling in human HF is related to impaired cardiac CK energy metabolism and that rescuing CK attenuates maladaptive hypertrophy in experimental HF.

METHODS:

First, in 27 HF patients and 14 healthy subjects, we measured cardiac energetics and left ventricular remodeling using noninvasive magnetic resonance 31P spectroscopy and magnetic resonance imaging, respectively. Second, we tested the impact of metabolic rescue with cardiac-specific overexpression of either Ckmyofib (myofibrillar CK) or Ckmito (mitochondrial CK) on HF-related maladaptive hypertrophy in mice.

RESULTS:

In people, pathologic left ventricular hypertrophy and dilatation correlate closely with reduced myocardial ATP levels and rates of ATP synthesis through CK. In mice, transverse aortic constriction-induced left ventricular hypertrophy and dilatation are attenuated by overexpression of CKmito, but not by overexpression of CKmyofib. CKmito overexpression also attenuates hypertrophy after chronic isoproterenol stimulation. CKmito lowers mitochondrial reactive oxygen species, tissue reactive oxygen species levels, and upregulates antioxidants and their promoters. When the CK capacity of CKmito-overexpressing mice is limited by creatine substrate depletion, the protection against pathologic remodeling is lost, suggesting the ADP regenerating capacity of the CKmito reaction rather than CK protein per se is critical in limiting adverse HF remodeling.

CONCLUSIONS:

In the failing human heart, pathologic hypertrophy and adverse remodeling are closely related to deficits in ATP levels and in the CK energy reserve reaction. CKmito, sitting at the intersection of cardiac energetics and redox balance, plays a crucial role in attenuating pathologic remodeling in HF. Registration URL https//www.clinicaltrials.gov; Unique identifier NCT00181259.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Creatina Quinase Mitocondrial / Insuficiência Cardíaca Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Creatina Quinase Mitocondrial / Insuficiência Cardíaca Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article