Your browser doesn't support javascript.
loading
IRF-2 inhibits cancer proliferation by promoting AMER-1 transcription in human gastric cancer.
Chen, Yan-Jie; Luo, Shu-Neng; Wu, Hao; Zhang, Ning-Ping; Dong, Ling; Liu, Tao-Tao; Liang, Li; Shen, Xi-Zhong.
Afiliação
  • Chen YJ; Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
  • Luo SN; Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
  • Wu H; Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
  • Zhang NP; Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
  • Dong L; Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
  • Liu TT; Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
  • Liang L; Department of Medical Oncology, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. liang.li@zs-hospital.sh.cn.
  • Shen XZ; Cancer Center, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. liang.li@zs-hospital.sh.cn.
J Transl Med ; 20(1): 68, 2022 02 03.
Article em En | MEDLINE | ID: mdl-35115027
BACKGROUND: Interferon regulatory factor 2 (IRF-2) acts as an anti-oncogene in gastric cancer (GC); however, the underlying mechanism remains unknown. METHODS: This study determined the expression of IRF-2 in GC tissues and adjacent non-tumor tissues using immunohistochemistry (IHC) and explored the predictive value of IRF-2 for the prognoses of GC patients. Cell function and xenograft tumor growth experiments in nude mice were performed to test tumor proliferation ability, both in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) assay was used to verify the direct target of IRF-2. RESULTS: We found that IRF-2 expression was downregulated in GC tissues and was negatively correlated with the prognoses of GC patients. IRF-2 negatively affected GC cell proliferation both in vitro and in vivo. ChIP-Seq assay showed that IRF-2 could directly activate AMER-1 transcription and regulate the Wnt/ß-catenin signaling pathway, which was validated using IHC, in both tissue microarray and xenografted tumor tissues, western blot analysis, and cell function experiments. CONCLUSIONS: Increased expression of IRF-2 can inhibit tumor growth and affect the prognoses of patients by directly regulating AMER-1 transcription in GC and inhibiting the Wnt/ß-catenin signaling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Gástricas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Gástricas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article