Your browser doesn't support javascript.
loading
Multiple Intestinal Bacteria Associated with the Better Protective Effect of Bifidobacterium pseudocatenulatum LI09 against Rat Liver Injury.
Zha, Hua; Si, Guinian; Wang, Chenyu; Zhang, Hua; Li, Lanjuan.
Afiliação
  • Zha H; State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
  • Si G; Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, China.
  • Wang C; Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, China.
  • Zhang H; State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
  • Li L; State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
Biomed Res Int ; 2022: 8647483, 2022.
Article em En | MEDLINE | ID: mdl-35127946
ABSTRACT
Bifidobacterium pseudocatenulatum LI09 could protect rats from D-galactosamine- (D-GalN-) induced liver injury. However, individual difference in the protective effects of LI09 on the liver injury remains poorly understood. The present study is aimed at determining the multiple intestinal bacteria associated with the better protective effect of LI09 against D-GalN-induced rat liver injury. Two rat cohorts, i.e., the nonsevere and severe cohorts, were divided based on their liver injury severity. Higher level of ALB and lower levels of ALT, AST, TBA, TB, IL-5, and MIP-3α were determined in the nonsevere cohort than the severe cohort. The alpha diversity indices (i.e., observed species, Shannon, and Pielou indices) did not yield significant differences between the intestinal microbiota of the nonsevere and severe cohorts. The intestinal microbiota composition was different between the two cohorts. Ten phylotypes assigned to Bacteroides, Clostridia_UCG-014, Clostridium Lachnospiraceae, Lachnospiraceae_NK4A136, and Parabacteroides were closely associated with the nonsevere cohort, among which, ASV8_Lachnospiraceae_NK4A136 was the most associated one. At the structure level, two groups of phylotypes with most correlations were determined in the intestinal microbiota networks of the two cohorts. Among them, ASV135_Lachnospiraceae_NK4A136 was the most powerful gatekeeper in the microbiota network of the nonsevere cohort. In conclusion, some intestinal bacteria, e.g., Lachnospiraceae_NK4A136, Parabacteroides, and Clostridium, were associated with the better protective effect of LI09 against D-GalN-induced rat liver injury. They were likely to enhance the effectiveness of LI09, and their clinical application deserves further investigation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Hepática Induzida por Substâncias e Drogas / Microbioma Gastrointestinal / Bifidobacterium pseudocatenulatum Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Hepática Induzida por Substâncias e Drogas / Microbioma Gastrointestinal / Bifidobacterium pseudocatenulatum Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article