Your browser doesn't support javascript.
loading
The red seaweed Kappaphycus alvarezii antiporter gene (KaNa+/H+) confers abiotic stress tolerance in transgenic tobacco.
Kumari, Jyoti; Haque, Md Intesaful; Jha, Rajesh K; Rathore, Mangal S.
Afiliação
  • Kumari J; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
  • Haque MI; Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, Gujarat, 364002, India.
  • Jha RK; Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, Gujarat, 364002, India.
  • Rathore MS; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Mol Biol Rep ; 49(5): 3729-3743, 2022 May.
Article em En | MEDLINE | ID: mdl-35141817
ABSTRACT

BACKGROUND:

Plant establishment, growth, development and productivity are adversely affected by abiotic stresses that are dominant characteristics of environmentally challenged/degraded habitats created in the Anthropocene. Crop breeding for climate resilience properties is need of the hour to sustain the crop productivity. We report on the characterization of Kappaphycus alvarezii (a red seaweed) Na+/H+ antiporter gene (KaNa+/H+) for enhanced salt and osmotic stress tolerance.

METHODS:

The KaNa+/H+ antiporter gene was cloned and over-expressed in tobacco under the control of CaMV35S promoter. Transgenic analysis was carried out to assess the stress tolerance ability of tobacco over-expressing KaNa+/H+ antiporter gene.

RESULTS:

Over-expression of KaNa+/H+ gene improved the seed germination and seed vigor index under stress. Transgenic plants grew better and exhibited delayed leaf senescence. Improved K+/Na+, carotenoid/total chlorophyll and relative water content; lower accumulation of reactive oxygen species (ROS), MDA and Na+; lower electrolyte leakage; better membrane stability index and accumulation of K+, photosynthetic pigment, starch, sugar, free amino acid, proline and polyphenol contents indicated better physiological health of the transgenic tobacco under stress. Transgenic tobacco exhibited higher photosynthesis, photosystem II efficiency, electron transfer rate, photochemical quenching and activity of water splitting complex. Compared with control tobacco, transgenic tobacco exhibited higher expression of stress-defence genes under stress and better recovery after long-term osmotic stress.

CONCLUSIONS:

Lower Na+ cytotoxicity, lower accumulation of ROS and maintenance of the membrane integrity helped transgenic tobacco to maintain the physiological functioning under stress. Present results established K. alvarezii as a potential gene resource and the KaNa+/H+ antiporter gene as a potential candidate gene in molecular breeding of crops for development of the degraded land.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alga Marinha / Nicotiana Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alga Marinha / Nicotiana Idioma: En Ano de publicação: 2022 Tipo de documento: Article