Your browser doesn't support javascript.
loading
Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies.
Nguyen, Pham T N; Abbès, Fazilay; Lecomte, Jean-Sébastien; Schuman, Christophe; Abbès, Boussad.
Afiliação
  • Nguyen PTN; The University of Danang, University of Science and Technology, Da Nang 550000, Vietnam.
  • Abbès F; MATériaux et Ingénierie Mécanique (MATIM), Université de Reims Champagne Ardenne, 51100 Reims, France.
  • Lecomte JS; MATériaux et Ingénierie Mécanique (MATIM), Université de Reims Champagne Ardenne, 51100 Reims, France.
  • Schuman C; Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, 57000 Metz, France.
  • Abbès B; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, 57000 Metz, France.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Article em En | MEDLINE | ID: mdl-35159645
ABSTRACT
This paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load-depth responses. Atomic force microscopy revealed two-fold unsymmetrical material pile-up patterns. Obtaining crystal plasticity model parameters usually requires time-consuming micromechanical tests. Inverse analysis using experimental and simulated loading-unloading nanoindentation curves of individual grains is commonly used, however the solution to the inverse identification problem is not necessarily unique. In this study, an approach is presented allowing the identification of CPFEM constitutive parameters from nanoindentation curves and residual topographies. The proposed approach combines the response surface methodology together with a genetic algorithm to determine an optimal set of parameters. The CPFEM simulations corroborate with measured nanoindentation curves and residual profiles and reveal the evolution of deformation activity underneath the indenter.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article