Your browser doesn't support javascript.
loading
Rheum officinale Baill. Treats zebrafish embryo thrombosis by regulating NOS3 expression in the arginine biosynthesis pathway.
Zhang, Yu-Ru; Liu, Yan-Ru; Tang, Zhi-Shu; Song, Zhong-Xing; Zhang, Jun-Wei; Chang, Bai-Jin; Zhao, Meng-Li; Xu, Jin.
Afiliação
  • Zhang YR; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China.
  • Liu YR; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China. Electronic address: yanzi_2203@aliyun.com.
  • Tang ZS; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China; Chinese Academy of Traditional Chinese Medicine, Beijing 100700, PR
  • Song ZX; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China. Electronic address: szx74816@sina.com.
  • Zhang JW; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China.
  • Chang BJ; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China; Changchun University of Chinese Medicine, Changchun 130117, PR Chin
  • Zhao ML; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China.
  • Xu J; Zhenba County Baihuagu Modern Agriculture and Animal Husbandry Development Co., Ltd., Hanzhong 723000, PR China.
Phytomedicine ; 99: 153967, 2022 May.
Article em En | MEDLINE | ID: mdl-35182903
ABSTRACT

BACKGROUND:

Rheum officinale Baill. (ROB), as one of the traditional Chinese medicines for promoting blood circulation and removing blood stasis, has a wide range of pharmacological effects, such as cardiovascular protection, and has become a common drug in the clinical care of thrombosis.

OBJECTIVE:

Although there are some pharmacological studies on ROB in the treatment of thrombotic diseases, the mechanism and material basis are still unclear. Based on the arginine biosynthesis signalling pathway, this research explored the target proteins and metabolites related to the intervention of ROB in thrombosis and expounded on the antithrombotic mechanism of ROB from the comprehensive perspectives of target prediction, intermediate metabolites and potential metabolic pathways.

METHODS:

In this research, ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technology was used to qualitatively detect the chemical compounds of ROB, and the antithrombotic activity of ROB was evaluated by establishing a zebrafish model. The target function was predicted by network pharmacology, and differential metabolites were screened by metabolomics and multivariate statistical analysis methods. Correlation analysis of network pharmacology and metabolomics screening results was conducted to identify the potential pathway of ROB intervention in thrombosis, and the prediction results were further verified.

RESULTS:

ROB significantly reduced the reactive oxygen species (ROS) staining intensity in zebrafish induced by phenylhydrazine (PHZ) and improved the inhibition rate of thrombosis. By constructing the "herb-disease-component-target" network, it was concluded that the active ingredients of ROB in treating thrombosis involved emodin, aloe-emodin and physcion, and the key targets included nitric oxide synthase 2 (NOS2) and nitric oxide synthase 3 (NOS3). A total of 341 differential metabolites in zebrafish with thrombosis were screened by partial least squares discriminant analysis (PLS-DA). The results of reverse transcription-polymerase chain reaction (RT-PCR) experiments and targeted metabolomics verification showed that ROB was mainly involved in improving thrombosis by upregulating the expression of NOS3 mRNA and regulating the levels of arginine, glutamate and glutamine in the arginine biosynthesis pathway.

CONCLUSIONS:

ROB improved thrombosis by regulating the expression of NOS3 mRNA and the contents of arginine, glutamate and glutamine in the arginine biosynthesis signalling pathway.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article