Your browser doesn't support javascript.
loading
Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction.
Bierbaumer, Sarah; Schmermund, Luca; List, Alexander; Winkler, Christoph K; Glueck, Silvia M; Kroutil, Wolfgang.
Afiliação
  • Bierbaumer S; Institute of Chemistry, Department of Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstraße 28, 8010, Graz, Austria.
  • Schmermund L; Institute of Chemistry, Department of Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstraße 28, 8010, Graz, Austria.
  • List A; Institute of Chemistry, Department of Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstraße 28, 8010, Graz, Austria.
  • Winkler CK; Institute of Chemistry, Department of Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstraße 28, 8010, Graz, Austria.
  • Glueck SM; Institute of Chemistry, Department of Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstraße 28, 8010, Graz, Austria.
  • Kroutil W; Institute of Chemistry, Department of Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstraße 28, 8010, Graz, Austria.
Angew Chem Int Ed Engl ; 61(17): e202117103, 2022 04 19.
Article em En | MEDLINE | ID: mdl-35188997
ABSTRACT
The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfóxidos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfóxidos Idioma: En Ano de publicação: 2022 Tipo de documento: Article