Your browser doesn't support javascript.
loading
Development of Nylon 6 nanofibers modified with Cyanex-272 for cobalt recovery.
Chaves, Rebeca Mello; Power, Nicholas P; Collinson, Simon Robert; Tanabe, Eduardo Hiromitsu; Bertuol, Daniel Assumpção.
Afiliação
  • Chaves RM; Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil.
  • Power NP; Faculty of Science, Technology, Engineering & Mathematics, School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, England.
  • Collinson SR; Faculty of Science, Technology, Engineering & Mathematics, School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, England.
  • Tanabe EH; Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil.
  • Bertuol DA; Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil.
Environ Technol ; 44(19): 2900-2912, 2023.
Article em En | MEDLINE | ID: mdl-35220916
ABSTRACT
With a worldwide ever increasing demand for metals, particularly for the manufacture of electronics and batteries, there is not only a concurrent need to recover these materials from their subsequent waste streams but also a need to make advancements to do this via development of more efficient and eco-friendly processes for metal recovery; solid-phase extraction can be considered a promising alternative to conventional processes. This work studied the production of novel nanofibers modified with Cyanex 272 and their application in the recovery of cobalt present in aqueous solution The nanofibers produced by forcespinning were characterized by SEM, FT-IR and TGA and the extraction of cobalt was evaluated by variation of the pH, solidliquid (SL) ratio, extraction time and Cyanex 272 content in the nanofibers. The best extraction efficiency was 99.96%, achieved under the following conditions pH 8; (SL) ratio of 1200; 25% of Cyanex 272; Extraction time of 60 min. The maximum extraction capacity obtained was 15.46 mg Co/g of nanofiber and 70.15 mg Co/g of extractor. In successive reuse cycles, the results demonstrated that the extraction efficiency was maintained at over 85%. The findings showed that Nylon 6/Cyanex 272 nanofibers are a new robust and promising material for the recovery of heavy metals from aqueous solution, confirming that nanofibers have an efficiency similar to conventional liquid-liquid extraction, without the disadvantage of volatile organic compounds emissions generated by the use of organic diluents.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cobalto / Nanofibras Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cobalto / Nanofibras Idioma: En Ano de publicação: 2023 Tipo de documento: Article