Your browser doesn't support javascript.
loading
Pressure-Induced Dimensional Crossover in a Kagome Superconductor.
Yu, Fanghang; Zhu, Xudong; Wen, Xikai; Gui, Zhigang; Li, Zeyu; Han, Yulei; Wu, Tao; Wang, Zhenyu; Xiang, Ziji; Qiao, Zhenhua; Ying, Jianjun; Chen, Xianhui.
Afiliação
  • Yu F; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhu X; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wen X; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Gui Z; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Li Z; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Han Y; Department of Physics, Fuzhou University, Fuzhou, Fujian 350108, China.
  • Wu T; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wang Z; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xiang Z; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Qiao Z; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Ying J; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Chen X; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev Lett ; 128(7): 077001, 2022 Feb 18.
Article em En | MEDLINE | ID: mdl-35244409
ABSTRACT
The recently discovered kagome superconductors AV_{3}Sb_{5} exhibit tantalizing high-pressure phase diagrams, in which a new domelike superconducting phase emerges under moderate pressure. However, its origin is as yet unknown. Here, we carried out the high-pressure electrical measurements up to 150 GPa, together with the high-pressure x-ray diffraction measurements and first-principles calculations on CsV_{3}Sb_{5}. We find the new superconducting phase to be rather robust and inherently linked to the interlayer Sb2-Sb2 interactions. The formation of Sb2-Sb2 bonds at high pressure tunes the system from two-dimensional to three-dimensional and pushes the p_{z} orbital of Sb2 upward across the Fermi level, resulting in enhanced density of states and increase of T_{C}. Our work demonstrates that the dimensional crossover at high pressure can induce a topological phase transition and is related to the abnormal high-pressure T_{C} evolution. Our findings should apply for other layered materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article