Your browser doesn't support javascript.
loading
Genome sequencing reveals novel noncoding variants in PLA2G6 and LMNB1 causing progressive neurologic disease.
Borja, Nicholas; Bivona, Stephanie; Peart, Lé Shon; Johnson, Brittany; Gonzalez, Joanna; Barbouth, Deborah; Moore, Henry; Guo, Shengru; Bademci, Guney; Tekin, Mustafa.
Afiliação
  • Borja N; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Bivona S; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Peart LS; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Johnson B; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Gonzalez J; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Barbouth D; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Moore H; Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Guo S; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Bademci G; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Tekin M; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.
Mol Genet Genomic Med ; 10(4): e1892, 2022 04.
Article em En | MEDLINE | ID: mdl-35247231
ABSTRACT
Neurodegenerative disorders and leukodystrophies are progressive neurologic conditions that can occur following the disruption of intricately coordinated patterns of gene expression. Exome sequencing has been adopted as an effective diagnostic tool for determining the underlying genetic etiology of Mendelian neurologic disorders, however genome sequencing offer advantages in its ability to identify and characterize copy number, structural, and sequence variants in noncoding regions. Genome sequencing from peripheral leukocytes was performed on two patients with progressive neurologic disease of unknown etiology following negative genetic investigations including exome sequencing. RNA sequencing from peripheral blood was performed to determine gene expression patterns in one of the patients. Potential causative variants were matched to the patients' clinical presentation. The first proband was found to be heterozygous for a likely pathogenic missense variant in PLA2G6 (c.386T>C; p.Leu129Pro) and have an additional deep intronic variant in PLA2G6 (c.2035-926G>A). RNA sequencing indicated this latter variant created a splice acceptor site leading to the incorporation of a pseudo-exon introducing a premature termination codon. The second proband was heterozygous for a 261 kb deletion upstream of LMNB1 that included an enhancer region. Previous reports of copy number variants spanning this region of cis-acting regulatory elements corroborated its pathogenicity. When combined with clinical presentations, these findings led to a definitive diagnosis of autosomal recessive infantile neuroaxonal dystrophy and autosomal dominant adult-onset demyelinating leukodystrophy, respectively. In patients with progressive neurologic disease of unknown etiology, genome sequencing with the addition of RNA analysis where appropriate should be considered for the identification of causative noncoding pathogenic variants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Distrofias Neuroaxonais / Lamina Tipo B / Fosfolipases A2 do Grupo VI Tipo de estudo: Prognostic_studies Limite: Adult / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Distrofias Neuroaxonais / Lamina Tipo B / Fosfolipases A2 do Grupo VI Tipo de estudo: Prognostic_studies Limite: Adult / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article