Single base mutations in the nucleocapsid gene of SARS-CoV-2 affects amplification efficiency of sequence variants and may lead to assay failure.
J Clin Virol Plus
; 1(3): 100037, 2021 Sep.
Article
em En
| MEDLINE
| ID: mdl-35262020
Reverse transcriptase quantitative PCR (RT-qPCR) is the main diagnostic assay used to detect SARS-CoV-2 RNA in respiratory samples. RT-qPCR is performed by specifically targeting the viral genome using complementary oligonucleotides called primers and probes. This approach relies on prior knowledge of the genetic sequence of the target. Viral genetic variants with changes to the primer/probe binding region may reduce the performance of PCR assays and have the potential to cause assay failure. In this work we demonstrate how two single nucleotide variants (SNVs) altered the amplification curve of a diagnostic PCR targeting the Nucleocapsid (N) gene and illustrate how threshold setting can lead to false-negative results even where the variant sequence is amplified. We also describe how in silico analysis of SARS-CoV-2 genome sequences available in the COVID-19 Genomics UK Consortium (COG-UK) and GISAID databases was performed to predict the impact of sequence variation on the performance of 22 published PCR assays. The vast majority of published primer and probe sequences contain sequence mismatches with at least one SARS-CoV-2 lineage. We recommend that visual observation of amplification curves is included as part of laboratory quality procedures, even in high throughput settings where thresholds are set automatically and that in silico analysis is used to monitor the potential impact of new variants on established assays. Ideally comprehensive in silico analysis should be applied to guide selection of highly conserved genomic regions to target with future SARS-CoV-2 PCR assays.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article