Your browser doesn't support javascript.
loading
α-synuclein and phosphoinositide-binding proteins: α-synuclein inhibits the association of PX- but not FYVE-containing proteins with vesicles in vivo.
Rajasekaran, Santhanasabapathy; Patel, Dhaval; Witt, Stephan N.
Afiliação
  • Rajasekaran S; Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
  • Patel D; Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
  • Witt SN; Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA. Electronic address: stephan.witt@lsuhs.edu.
Biochem Biophys Res Commun ; 603: 7-12, 2022 05 07.
Article em En | MEDLINE | ID: mdl-35263697
ABSTRACT
By an unknown mechanism, alpha-synuclein (α-syn) inhibits autophagy in yeast and human cells. Herein, using the yeast Saccharomyces cerevisiae, we tested the hypothesis that α-syn disrupts autophagy by inhibiting the required association of sorting nexin 4 (Snx4) with phagophores. Snx4 contains a phox (PX) homology domain that selectively binds membranes enriched in phosphatidylinositol 3-phosphate (PI3P). Using fluorescence microscopy, we show that upon nitrogen starvation, 70% of the cells exhibited green puncta (phagophores); whereas identically treated cells expressing α-syn exhibited a significantly lower percentage of cells (30%) with such puncta. Our interpretation is that α-syn outcompetes Snx4 for binding to membranes enriched in PI3P, resulting in fewer phagophores and consequently inefficient induction of autophagy. As a control, we tested whether α-syn disrupts the binding of Vps27-GFP to late endosomes/multivesicular bodies (MVBs). Vps27 contains a PI3P-binding domain called FYVE. α-Syn did not disrupt the binding of Vps27-GFP to late endosomes. α-Syn likely inhibits the binding of PX- but not FYVE-containing proteins to PI3P because FYVE domains bind more than two-orders of magnitude tighter than PX domains. We propose that in all cells, whether yeast or human, α-syn has the potential to inhibit protein trafficking pathways that are dependent on PX-domain proteins such as sorting nexins.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Transporte / Proteínas de Saccharomyces cerevisiae / Domínios Proteicos Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Transporte / Proteínas de Saccharomyces cerevisiae / Domínios Proteicos Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article