Your browser doesn't support javascript.
loading
Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene.
Betti, Maria Grazia; Placidi, Ernesto; Izzo, Chiara; Blundo, Elena; Polimeni, Antonio; Sbroscia, Marco; Avila, José; Dudin, Pavel; Hu, Kailong; Ito, Yoshikazu; Prezzi, Deborah; Bonacci, Miki; Molinari, Elisa; Mariani, Carlo.
Afiliação
  • Betti MG; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Placidi E; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Izzo C; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Blundo E; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Polimeni A; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Sbroscia M; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Avila J; Synchrotron SOLEIL, Université Paris-Saclay, Saint Aubin, BP 48, 91192 Gif sur Yvette, France.
  • Dudin P; Synchrotron SOLEIL, Université Paris-Saclay, Saint Aubin, BP 48, 91192 Gif sur Yvette, France.
  • Hu K; School of Materials Science and Engineering and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China.
  • Ito Y; Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan.
  • Prezzi D; S3, Istituto Nanoscienze-CNR, Via Campi 213/A, 41125 Modena, Italy.
  • Bonacci M; S3, Istituto Nanoscienze-CNR, Via Campi 213/A, 41125 Modena, Italy.
  • Molinari E; Dipartimento di Scienze Fisiche, Informatiche e Matematiche (FIM), Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy.
  • Mariani C; S3, Istituto Nanoscienze-CNR, Via Campi 213/A, 41125 Modena, Italy.
Nano Lett ; 22(7): 2971-2977, 2022 Apr 13.
Article em En | MEDLINE | ID: mdl-35294200
ABSTRACT
Conversion of free-standing graphene into pure graphane─where each C atom is sp3 bound to a hydrogen atom─has not been achieved so far, in spite of numerous experimental attempts. Here, we obtain an unprecedented level of hydrogenation (≈90% of sp3 bonds) by exposing fully free-standing nanoporous samples─constituted by a single to a few veils of smoothly rippled graphene─to atomic hydrogen in ultrahigh vacuum. Such a controlled hydrogenation of high-quality and high-specific-area samples converts the original conductive graphene into a wide gap semiconductor, with the valence band maximum (VBM) ∼ 3.5 eV below the Fermi level, as monitored by photoemission spectromicroscopy and confirmed by theoretical predictions. In fact, the calculated band structure unequivocally identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of π states, in excellent agreement with the experimental results.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article