Your browser doesn't support javascript.
loading
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows.
Jawahar, Pratik; Aarrestad, Thea; Chernyavskaya, Nadezda; Pierini, Maurizio; Wozniak, Kinga A; Ngadiuba, Jennifer; Duarte, Javier; Tsan, Steven.
Afiliação
  • Jawahar P; Experimental Physics Department, European Center for Nuclear Research (CERN), Geneva, Switzerland.
  • Aarrestad T; Experimental Physics Department, European Center for Nuclear Research (CERN), Geneva, Switzerland.
  • Chernyavskaya N; Experimental Physics Department, European Center for Nuclear Research (CERN), Geneva, Switzerland.
  • Pierini M; Experimental Physics Department, European Center for Nuclear Research (CERN), Geneva, Switzerland.
  • Wozniak KA; Experimental Physics Department, European Center for Nuclear Research (CERN), Geneva, Switzerland.
  • Ngadiuba J; Faculty of Computer Science, University of Vienna, Vienna, Austria.
  • Duarte J; Particle Physics Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, United States.
  • Tsan S; Lauritsen Laboratory of High Energy Physics, California Institute of Technology, Pasadena, CA, United States.
Front Big Data ; 5: 803685, 2022.
Article em En | MEDLINE | ID: mdl-35295683
We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article