Suppressing the activation of protein kinase A as a DNA damage-independent mechanistic lead for dihydromethysticin prophylaxis of NNK-induced lung carcinogenesis.
Carcinogenesis
; 43(7): 659-670, 2022 08 30.
Article
em En
| MEDLINE
| ID: mdl-35353881
Our earlier work demonstrated varying potency of dihydromethysticin (DHM) as the active kava phytochemical for prophylaxis of tobacco carcinogen nicotine-derived nitrosamine ketone (NNK)-induced mouse lung carcinogenesis. Efficacy was dependent on timing of DHM gavage ahead of NNK insult. In addition to DNA adducts in the lung tissues mitigated by DHM in a time-dependent manner, our in vivo data strongly implicated the existence of DNA damage-independent mechanism(s) in NNK-induced lung carcinogenesis targeted by DHM to fully exert its anti-initiation efficacy. In the present work, RNA seq transcriptomic profiling of NNK-exposed (2 h) lung tissues with/without a DHM (8 h) pretreatment revealed a snap shot of canonical acute phase tissue damage and stress response signaling pathways as well as an activation of protein kinase A (PKA) pathway induced by NNK and the restraining effects of DHM. The activation of the PKA pathway by NNK active metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) at a concentration incapable of promoting DNA adduct was confirmed in a lung cancer cell culture model, potentially through NNAL binding to and activation of the ß-adrenergic receptor. Our in vitro and in vivo data overall support the hypothesis that DHM suppresses PKA activation as a key DNA damage-independent mechanistic lead, contributing to its effective prophylaxis of NNK-induced lung carcinogenesis. Systems biology approaches with a detailed temporal dissection of timing of DHM intake versus NNK exposure are warranted to fill the knowledge gaps concerning the DNA damage-driven mechanisms and DNA damage-independent mechanisms to optimize the implementation strategy for DHM to achieve maximal lung cancer chemoprevention.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Pulmonares
/
Nitrosaminas
Limite:
Animals
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article