Your browser doesn't support javascript.
loading
Animal manures promoted soil phosphorus transformation via affecting soil microbial community in paddy soil.
Chen, Guanglei; Yuan, Jiahui; Chen, Hao; Zhao, Xu; Wang, Shenqiang; Zhu, Yiyong; Wang, Yu.
Afiliação
  • Chen G; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of
  • Yuan J; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Chen H; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Zhao X; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Wang S; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Zhu Y; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China.
  • Wang Y; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address: wangyu@issas.ac.cn.
Sci Total Environ ; 831: 154917, 2022 Jul 20.
Article em En | MEDLINE | ID: mdl-35364170
Animal manures are reported as good substitutes for chemical fertilizers to mobilize soil phosphorus (P). However, the mechanisms on how different types of manures regulate microbial biomass involved in P mobilization remain unclear. In this study, we conducted a two-year field experiment to investigate variations in soil microbial biomass carbon (MBC) and P (MBP) and P fractions after 30% animal manures substitution (pig manure (PM), chicken manure (CM), and dairy manure (DM)) in paddy soil. Furthermore, a 30-day incubation experiment was used to explore the mechanisms of soil P transformation induced by 100% manures addition. Two-year field experiment results showed that, compared to the chemical NPK fertilizer, 30% manure substitution didn't influence rice and wheat yields significantly but decreased soil total P loss from runoff by 3.2%. However, 30% manure substitution significantly enhanced MBC and MBP by 11.3-18.4% and 57.1-81.2%, respectively, which also promoted the transformation of moderately labile P (M-P) to labile P (L-P). Moreover, the incubation experiment also convinced that all manures caused higher MBC than chemical P fertilizer. Meanwhile, compared to the no P fertilizer, manures increased L-P and organic P by 2.7%-14.7% and 6.4%-20.0%, respectively. Redundancy analysis indicated that soil MBC/MBP ratio was the main factor to soil L-P and M-P, indicating that animal manures can improve soil microbial abundance and thus promote M-P to L-P in soil. Among three animal manures, PM could improve the mobilization potential of P mostly, due to the highest C source activity by 13C NMR analysis. Our study indicated that animal manures especially PM can be considered as a good candidate for agricultural P management in paddy soils because of their capacity to promote soil P transformation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Microbiota Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Microbiota Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article