A novel approach for skin lesion symmetry classification with a deep learning model.
Comput Biol Med
; 145: 105450, 2022 06.
Article
em En
| MEDLINE
| ID: mdl-35364312
Skin cancer has become a public health problem due to its increasing incidence. However, the malignancy risk of the lesions can be reduced if diagnosed at an early stage. To do so, it is essential to identify particular characteristics such as the symmetry of lesions. In this work, we present a novel approach for skin lesion symmetry classification of dermoscopic images based on deep learning techniques. We use a CNN model, which classifies the symmetry of a skin lesion as either "fully asymmetric", "symmetric with respect to one axis", or "symmetric with respect to two axes". Moreover, we introduce a new dataset of labels for 615 skin lesions. During the experimentation framework, we also evaluate whether it is beneficial to rely on transfer learning from pre-trained CNNs or traditional learning-based methods. As a result, we present a new simple, robust and fast classification pipeline that outperforms methods based on traditional approaches or pre-trained networks, with a weighted-average F1-score of 64.5%.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Dermatopatias
/
Neoplasias Cutâneas
/
Aprendizado Profundo
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article