Your browser doesn't support javascript.
loading
Advanced Carbon-Based Nanocatalysts and their Application in Catalytic Conversion of Renewable Platform Molecules.
Chen, Zemin; Zeng, Xiang; Wang, Shenyu; Cheng, Aohua; Zhang, Ying.
Afiliação
  • Chen Z; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
  • Zeng X; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
  • Wang S; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
  • Cheng A; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
  • Zhang Y; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
ChemSusChem ; 15(11): e202200411, 2022 Jun 08.
Article em En | MEDLINE | ID: mdl-35366059
ABSTRACT
The transformation of renewable platform molecules to produce value-added fuels and fine-chemicals is a promising strategy to sustainably meet future demands. Owing to their finely modified electronic and geometric properties, carbon-based nanocatalysts have shown great capability to regulate their catalytic activity and stability. Their well-defined and uniform structures also provide both the opportunity to explore intrinsic reaction mechanisms and the site-requirement for valorization of renewable platform molecules to advanced fuels and chemicals. This Review highlights the progress achieved in carbon-based nanocatalysts, mainly by using effective regulation approaches such as heteroatom anchoring, bimetallic synergistic effects, and carbon encapsulation to enhance catalyst performance and stability, and their applications in renewable platform molecule transformations. The foundation for understanding the structure-performance relationship of carbon-based catalysts has been established by investigating the effect of these regulation methods on catalyst performance. Finally, the opportunities, challenges and potential applications of carbon-based nanocatalysts are discussed.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carbono Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carbono Idioma: En Ano de publicação: 2022 Tipo de documento: Article