Your browser doesn't support javascript.
loading
Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
Cornean, Alex; Gierten, Jakob; Welz, Bettina; Mateo, Juan Luis; Thumberger, Thomas; Wittbrodt, Joachim.
Afiliação
  • Cornean A; Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
  • Gierten J; Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg, Germany.
  • Welz B; Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
  • Mateo JL; Department of Pediatric Cardiology, University Hospital Heidelberg, Heidelberg, Germany.
  • Thumberger T; DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany.
  • Wittbrodt J; Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
Elife ; 112022 04 04.
Article em En | MEDLINE | ID: mdl-35373735
ABSTRACT
Single nucleotide variants (SNVs) are prevalent genetic factors shaping individual trait profiles and disease susceptibility. The recent development and optimizations of base editors, rubber and pencil genome editing tools now promise to enable direct functional assessment of SNVs in model organisms. However, the lack of bioinformatic tools aiding target prediction limits the application of base editing in vivo. Here, we provide a framework for adenine and cytosine base editing in medaka (Oryzias latipes) and zebrafish (Danio rerio), ideal for scalable validation studies. We developed an online base editing tool ACEofBASEs (a careful evaluation of base-edits), to facilitate decision-making by streamlining sgRNA design and performing off-target evaluation. We used state-of-the-art adenine (ABE) and cytosine base editors (CBE) in medaka and zebrafish to edit eye pigmentation genes and transgenic GFP function with high efficiencies. Base editing in the genes encoding troponin T and the potassium channel ERG faithfully recreated known cardiac phenotypes. Deep-sequencing of alleles revealed the abundance of intended edits in comparison to low levels of insertion or deletion (indel) events for ABE8e and evoBE4max. We finally validated missense mutations in novel candidate genes of congenital heart disease (CHD) dapk3, ube2b, usp44, and ptpn11 in F0 and F1 for a subset of these target genes with genotype-phenotype correlation. This base editing framework applies to a wide range of SNV-susceptible traits accessible in fish, facilitating straight-forward candidate validation and prioritization for detailed mechanistic downstream studies.
DNA contains sequences of four different molecules known as bases that represent our genetic code. In a mutation called a single nucleotide variant (or SNV for short), a single base in the sequence is swapped for another base. This can lead the individual carrying this SNV to produce a slightly different version of a protein to that found in other people. This slightly different protein may not work properly, or may perform a different task. In recent years, researchers have identified thousands of SNVs in humans linked with congenital heart diseases, but the roles of many of these SNVs remain unclear. Tools known as base editors allow researchers to efficiently modify single bases in DNA. Base editors use molecules known as short guide RNAs (or sgRNAs for short) to direct enzymes to specific positions in the DNA to swap, delete or insert a base. The sgRNAs need to be carefully designed to target the correct bases, however, which is a time consuming process. Furthermore, base editors were developed in cells grown in laboratories and so far only a few studies have demonstrated how they could be used in living animals. To overcome these limitations, Cornean, Gierten, Welz et al. developed a framework for base editing in two species of fish that are often used as models in research, namely medaka and zebrafish. The framework uses existing base editors that swap individual target bases and a new online tool ­ referred to as ACEofBASEs ­ to help design the required sgRNAs. The team were able to use the framework to characterize the medaka equivalents of four SNVs that have been previously associated with congenital heart disease in humans. The new framework developed here will help researchers to investigate the roles of SNVs in fish and other animals and validate human disease candidates. This approach could also be used to study the various ways that cells modify proteins by changing the specific bases involved in such modifications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Edição de Genes Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Edição de Genes Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article