Your browser doesn't support javascript.
loading
Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum.
Wu, Fenghui; Ren, Yuanchaun; Qu, Guangfei; Liu, Shan; Chen, Bangjin; Liu, Xinxin; Zhao, Chenyang; Li, Junyan.
Afiliação
  • Wu F; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
  • Ren Y; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
  • Qu G; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China. Electronic address: qgflab@sina.com.
  • Liu S; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
  • Chen B; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
  • Liu X; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
  • Zhao C; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
  • Li J; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
J Environ Manage ; 313: 114957, 2022 Jul 01.
Article em En | MEDLINE | ID: mdl-35390656
ABSTRACT
Phosphogypsum is one of the hottest issues in the field of environmental solid waste treatment, with complex and changeable composition. Meanwhile, phosphogypsum contains a large number of impurities, thus leading to the low resource utilization rate, and it can only be stockpiled in large quantities. Phosphogypsum occupies a lot of land and poses a serious pollution threat to the ecological environment. This paper mainly summarizes the existing pretreatment and resource utilization technology of phosphogypsum. The pretreatment mainly includes dry method and wet method. The resource utilization technology mainly includes building materials, chemical raw materials, agriculture, environmental functional materials, filling materials, carbon sequestration and rare and precious extraction. Although there are many aspects of resource utilization of phosphogypsum, the existing technology is far from being able to consume a large amount of accumulated and generated phosphogypsum. Through the analysis, the comparison and mechanism analysis of the existing multifaceted and multi-level resource treatment technologies of phosphogypsum, the four promising resource utilization directions of phosphogypsum are put forward, mainly including prefabricated building materials, eco-friendly materials and soil materials, and new green functional materials and chemical fillers. Moreover, this paper summarizes the research basis of multi field and all-round treatment and disposal of phosphogypsum, which reduces repeated researches and development, as well as the treatment cost of phosphogypsum. This paper could provide a feasible research direction for the resource treatment technology of phosphogypsum in the future, so as to improve the consumption of phosphogypsum and reduce environmental risks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resíduos Sólidos / Resíduos Industriais Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resíduos Sólidos / Resíduos Industriais Idioma: En Ano de publicação: 2022 Tipo de documento: Article