Your browser doesn't support javascript.
loading
Geometric Analysis of Signals for Inference of Multiple Faults in Induction Motors.
Contreras-Hernandez, Jose L; Almanza-Ojeda, Dora L; Ledesma, Sergio; Garcia-Perez, Arturo; Castro-Sanchez, Rogelio; Gomez-Martinez, Miguel A; Ibarra-Manzano, Mario A.
Afiliação
  • Contreras-Hernandez JL; Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico.
  • Almanza-Ojeda DL; Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico.
  • Ledesma S; Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico.
  • Garcia-Perez A; Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico.
  • Castro-Sanchez R; Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico.
  • Gomez-Martinez MA; Department of Electrical Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico.
  • Ibarra-Manzano MA; Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico.
Sensors (Basel) ; 22(7)2022 Mar 29.
Article em En | MEDLINE | ID: mdl-35408236
Multiple fault identification in induction motors is essential in industrial processes due to the high costs that unexpected failures can cause. In real cases, the motor could present multiple faults, influencing systems that classify isolated failures. This paper presents a novel methodology for detecting multiple motor faults based on quaternion signal analysis (QSA). This method couples the measured signals from the motor current and the triaxial accelerometer mounted on the induction motor chassis to the quaternion coefficients. The QSA calculates the quaternion rotation and applies statistics such as mean, variance, kurtosis, skewness, standard deviation, root mean square, and shape factor to obtain their features. After that, four classification algorithms are applied to predict motor states. The results of the QSA method are validated for ten classes: four single classes (healthy condition, unbalanced pulley, bearing fault, and half-broken bar) and six combined classes. The proposed method achieves high accuracy and performance compared to similar works in the state of the art.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Indústrias Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Indústrias Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article