Your browser doesn't support javascript.
loading
A Shared Nephroprotective Mechanism for Renin-Angiotensin-System Inhibitors, Sodium-Glucose Co-Transporter 2 Inhibitors, and Vasopressin Receptor Antagonists: Immunology Meets Hemodynamics.
Capolongo, Giovanna; Capasso, Giovambattista; Viggiano, Davide.
Afiliação
  • Capolongo G; Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
  • Capasso G; BioGeM, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy.
  • Viggiano D; Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
Int J Mol Sci ; 23(7)2022 Apr 01.
Article em En | MEDLINE | ID: mdl-35409276
ABSTRACT
A major paradigm in nephrology states that the loss of filtration function over a long time is driven by a persistent hyperfiltration state of surviving nephrons. This hyperfiltration may derive from circulating immunological factors. However, some clue about the hemodynamic effects of these factors derives from the effects of so-called nephroprotective drugs. Thirty years after the introduction of Renin-Angiotensin-system inhibitors (RASi) into clinical practice, two new families of nephroprotective drugs have been identified the sodium-glucose cotransporter 2 inhibitors (SGLT2i) and the vasopressin receptor antagonists (VRA). Even though the molecular targets of the three-drug classes are very different, they share the reduction in the glomerular filtration rate (GFR) at the beginning of the therapy, which is usually considered an adverse effect. Therefore, we hypothesize that acute GFR decline is a prerequisite to obtaining nephroprotection with all these drugs. In this study, we reanalyze evidence that RASi, SGLT2i, and VRA reduce the eGFR at the onset of therapy. Afterward, we evaluate whether the extent of eGFR reduction correlates with their long-term efficacy. The results suggest that the extent of initial eGFR decline predicts the nephroprotective efficacy in the long run. Therefore, we propose that RASi, SGLT2i, and VRA delay kidney disease progression by controlling maladaptive glomerular hyperfiltration resulting from circulating immunological factors. Further studies are needed to verify their combined effects.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inibidores do Transportador 2 de Sódio-Glicose Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inibidores do Transportador 2 de Sódio-Glicose Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article