Your browser doesn't support javascript.
loading
Trapping Ca+ inside a molecular cavity: computational study of the potential energy surfaces for Ca+-[n]cycloparaphenylene, n = 5-12.
Allen, Cole D; Rempe, Susan L B; Zwier, Timothy S; Ren, Pengyu.
Afiliação
  • Allen CD; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA. slrempe@sandia.gov.
  • Rempe SLB; Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
  • Zwier TS; Sandia National Laboratories, Gas Phase Chemical Physics, Livermore, CA 94550, USA.
  • Ren P; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA. slrempe@sandia.gov.
Phys Chem Chem Phys ; 24(17): 10085-10094, 2022 May 04.
Article em En | MEDLINE | ID: mdl-35416200
Ion trap quantum computing utilizes electronic states of atomic ions such as Ca+ to encode information on to a qubit. To explore the fundamental properties of Ca+ inside molecular cavities, we describe here a computational study of Ca+ bound inside neutral [n]-cycloparaphenylenes (n = 5-12), often referred to as "nanohoops". This ab initio study characterizes optimized structures, harmonic vibrational frequencies, potential energy surfaces, and ion molecular orbital distortion as functions of increasing nanohoop size. The results of this work provide a first step in guiding experimental studies of the spectroscopy of these ion-molecular cavity complexes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article