Your browser doesn't support javascript.
loading
Extracellular Vesicles Regulate Biofilm Formation and Yeast-to-Hypha Differentiation in Candida albicans.
Honorato, Leandro; de Araujo, Joana Feital Demetrio; Ellis, Cameron C; Piffer, Alicia Corbellini; Pereira, Yan; Frases, Susana; de Sousa Araújo, Glauber Ribeiro; Pontes, Bruno; Mendes, Maria Tays; Pereira, Marcos Dias; Guimarães, Allan J; da Silva, Natalia Martins; Vargas, Gabriele; Joffe, Luna; Del Poeta, Maurizio; Nosanchuk, Joshua D; Zamith-Miranda, Daniel; Dos Reis, Flávia Coelho Garcia; de Oliveira, Haroldo Cesar; Rodrigues, Marcio L; de Toledo Martins, Sharon; Alves, Lysangela Ronalte; Almeida, Igor C; Nimrichter, Leonardo.
Afiliação
  • Honorato L; Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • de Araujo JFD; Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Ellis CC; Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA.
  • Piffer AC; Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Pereira Y; Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Frases S; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • de Sousa Araújo GR; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Pontes B; LPO-COPEA, Instituto de Ciências Biomédicas & Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Mendes MT; Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA.
  • Pereira MD; Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Guimarães AJ; Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil.
  • da Silva NM; Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Vargas G; Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Joffe L; Department of Microbiology and Immunology, Stony Brook Universitygrid.36425.36, Stony Brook, New York, USA.
  • Del Poeta M; Department of Microbiology and Immunology, Stony Brook Universitygrid.36425.36, Stony Brook, New York, USA.
  • Nosanchuk JD; Department of Microbiology and Immunology and Division of Infectious Diseases, Stony Brook Universitygrid.36425.36, Stony Brook, New York, USA.
  • Zamith-Miranda D; Veterans Affairs Medical Center, Northport, New York, USA.
  • Dos Reis FCG; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
  • de Oliveira HC; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
  • Rodrigues ML; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
  • de Toledo Martins S; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
  • Alves LR; Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil.
  • Almeida IC; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
  • Nimrichter L; Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil.
mBio ; 13(3): e0030122, 2022 06 28.
Article em En | MEDLINE | ID: mdl-35420476
In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence. IMPORTANCE The ability to undergo morphological changes during adaptation to distinct environments is exploited by Candida albicans and has a direct impact on biofilm formation and virulence. Morphogenesis is controlled by a diversity of stimuli, including osmotic stress, pH, starvation, presence of serum, and microbial components, among others. Apart from external inducers, C. albicans also produces autoregulatory substances. Farnesol and tyrosol are examples of quorum-sensing molecules (QSM) released by C. albicans to regulate yeast-to-hypha conversion. Here, we demonstrate that fungal EVs are messengers impacting biofilm formation, morphogenesis, and virulence in C. albicans. The major players exported in C. albicans EVs included sesquiterpenes, diterpenes, and fatty acids. The understanding of how C. albicans cells communicate to regulate physiology and pathogenesis can lead to novel therapeutic tools to combat candidiasis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Candida albicans / Vesículas Extracelulares Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Candida albicans / Vesículas Extracelulares Idioma: En Ano de publicação: 2022 Tipo de documento: Article